
Cordova	-	Guide	-	jQuery	Mobile
Dr	Nick	Hayward

A	brief	overview	and	introduction	to	the	jQuery	Mobile	UI	library.

Contents

Intro
Customise	UI	design
jQuery	Mobile	Guide
Pages

basic	page	structure
basic	page	template

Concept	of	dialogs
basic	dialog	template

Navigation
example

Using	widgets
listview

References

Intro

jQuery	mobile	was	designed	as	an	off-shoot	of	the	popular	jQuery	JavaScript	library	with	specific	focus	upon	mobile
devices,	specifications,	and	requirements.	Its	goal	is	to	leverage	HTML5	and	CSS3	for	simple,	fast,	and	responsive
development	of	mobile	centric	user	interfaces.	It	has	been	designed	with	touch	in	mind,	and	responds	to	user
generated	events	as	expected	for	touch-enabled	devices.

The	key	aspect	of	this	library,	and	its	particular	relevance	to	Cordova	development,	is	its	support	for	cross-platform
devices	and	operating	systems.	In	effect,	design	once,	and	then	deploy	to	all	supported	devices	and	browsers.

Browser	support	for	the	latest	1.4	version	release	is	excellent,	and	further	details	can	be	found	at	the	following	URL

jQuery	Mobile	1.4	Browser	Support	-	https://jQuerymobile.com/browser-support/1.4/

Further	documentation	can	be	found	at	the	following	URL,

jQuery	Mobile	API	-	https://api.jquerymobile.com/

Further	project	details	can	be	found	at	the	following	URL,

jQuery	Mobile	-	https://jquerymobile.com/

Customise	UI	design

With	jQuery	Mobile,	we	can	customise	our	design,	either	manually	or	with	ThemeRoller	on	the	project's	website.

jQuery	ThemeRoller	-	http://themeroller.jquerymobile.com/

We	can	also	customise	the	JavaScript	build	to	ensure	we	only	download	the	required	components	for	our	given
application.	This	builder	is	available	at	the	following	URL,

jQuery	Download	Builder	-	http://jQuerymobile.com/download-builder/

https://jquerymobile.com/browser-support/1.4/
https://api.jquerymobile.com/
https://jquerymobile.com/
http://themeroller.jquerymobile.com/
http://jquerymobile.com/download-builder/

In	essence,	anyone	familiar	with	jQuery	will	feel	at	home	with	jQuery	Mobile.	It	is	based	on	jQuery,	and	has	baked-in
support	for	accessibility	and	universal	access.	jQuery	claims	that	the	project	follows,

...progressive	enhancement	and	responsive	web	design	(RWD)	-
http://demos.jquerymobile.com/1.4.5/rwd/	principles.

As	noted,	HTML5	is	the	technology	underpinning	this	library,	thereby	making	it	easy	to	design	and	develop	for
applications.	However,	they	also	include	a	powerful	API,	which	the	project	claims	inherently	makes	is	easy	to
customise	and	extend	the	library.	Their	API	can	be	found	at	the	following	URL,

jQuery	Mobile	API	-	http://api.jquerymobile.com/

jQuery	Mobile	guide

jQuery	Mobile	presents	many	different	options	for	design	and	customising	the	UI	of	your	mobile	applications.	We	can
use	it	as	a	component	of	responsive	design,	or	add	it	as	a	baked-in	component	of	a	native	mobile	app.	We	can	often
consider	jQuery	Mobile	as	a	mixture	of	the	following,

pages	and	the	concept	of	dialogs
general	navigation
working	with	content
theming	and	UI	design

Pages

Use	of	pages	is	a	fundamental	concept	for	structuring,	rendering,	and	using	an	application.	We	can	make	them	simple,
including	just	a	basicpage	wrapper,	or	detailed	and	layered	within	many	pages	grouping	content	together	within	a
single	multi-page	template.	As	an	additional	option	for	rendering	this	content,	we	can	also	consider	pages	as	native
dialogs,	thereby	offering	the	user	a	quick,	responsive	view	in	a	styled	modal	overlay.

Then,	we	can	further	enhance	and	manipulate	such	rendering	options	with	Ajax	navigation	and	animated	transitions.
By	default,	jQuery	Mobile	offers	a	simple,	yet	powerful,	Ajax-based	system	of	navigation.	In	essence,	it	works	by
intercepting	a	standard	anchor	or	link	request,	and	instead	processing	it	as	an	Ajax	request.

This	Ajax	navigation	supports	the	standard	back	button	in	browsers,	thereby	not	resetting	or	breaking	the	application's
navigation.	It	also	supports	a	concept	of	pre-fetching	pages	into	the	DOM,	and	the	ability	to	cache	one,	a	few,	or	all
pages	within	an	application	for	quick,	responsive	rendering.	As	you	might	expect,	if	there	is	any	perceptible	delay	in
the	return,	this	Ajax	navigation	will	use	a	standard	loader	overlay	to	help	inform	the	user	in	a	timely	manner.

As	a	requested	page	is	loaded,	it	is	effectively	looking	for	just	the	content	in	the	page,	which	is	then	inserted	into	the
DOM.	Any	widgets	in	the	incoming	page	will	be	updated	to	match	defined	styles	and	behaviour,	and	then	the
remainder	of	the	page	is	ignored.	It	will	not	be	included	in	the	updated	DOM	of	our	page.	However,	the	title	of	the	page
will	be	updated	to	reflect	the	loading	and	rendering	of	the	new	page	into	an	active	view.

As	it's	JS,	and	jQuery	as	well,	we	can	apply	animations	and	transitions	for	this	loading	and	view.	By	default,	jQuery
Mobile	sets	this	transition	to	fade,	but	we	can	modify	this	to	another	effect	or	simply	remove.	For	example,	we	can	use
transitions	such	as	fade,	pop,	flip,	turn,	slide,	and	so	on.

We	can	also	add	standard	HTML	elements	to	our	app's	code.	We	can	add	headings,	paragraphs,	divs,	links,	images,
and	so	on.	We	can	use	these	elements	to	create	our	own	custom	layouts	and	designs,	and	style	as	required	for	our
app's	aesthetics.	We	simply	add	an	additional	stylesheet	to	the	page's	 <head> 	element	after	the	jQuery	mobile
stylesheet.

However,	by	default	jQuery	Mobile	includes	existing	touch-friendly	widgets	for	use	within	our	UI.	We	can	add	forms,

collapsible	elements	and	sets,	various	popups	and	dialogs,	responsive	table	designs,	list	views,	and	so	on.	We	can
also	customise	our	JS	code	to	ensure	we	only	load	and	use	those	widgets	and	UI	elements	necessary	for	our
application.	Again,	another	simple	way	to	speed	up	our	application.

basic	page	structure

As	we	might	expect	with	a	HTML5	based	framework,	we	need	to	define	our	pages	with	the	standard	HTML5	doctype,

<!DOCTYPE	html>

This	allows	us	to	exploit	and	manipulate	many	of	the	new	content	categories	available	within	HTML5.	We	can	also	add
correct	semantic	organisation	of	our	content,	using	the	new	 header ,	 main ,	and	 footer 	elements,	for	example.

Then,	we	need	to	define	the	 <head> 	element,	and	associated	metadata.	For	example,	we	can	define	the	viewport	for
our	devices,	thereby	customising	for	mobile	devices.

The	viewport	tag	basically	allows	us	to	set	the	default	zoom	level	for	page	rendering,	and	its	associated	dimensions.	If
we	don't	set	the	value,	most	mobile	web	browsers	will	simply	set	a	best	guess,	standardised	width	of	approximately
900	pixels.	This	is	normally	set	to	help	the	page	render	well	in	both	mobile	and	desktop	browsers,	which	is,	of	course,
little	use	for	Cordova.

Therefore,	by	setting	this	meta	tag	to

<meta	name="viewport"	content="width=device-width,	initial-scale=1">

we	get	a	width	that	is	set	to	the	pixel	width	of	the	device's	screen.	Thankfully,	this	does	not	affect	a	user's	ability	to
zoom	a	page.

Of	course,	we	also	need	to	add	references	to	the	jQuery	Mobile	libraries	with	the	standard	CSS	 <link> 	and	JS	
<script> 	elements.

basic	page	template	-	initial	page

<!DOCTYPE	html>
<html>
<head>
	 <title>Basic	App</title>
	 <meta	name="viewport"	content="width=device-width,	initial-scale=1">
	 <link	rel="stylesheet"	href="http://code.jquery.com/mobile/[version]/
		jquery.mobile-[version].min.css"	/>
	 <script	src="http://code.jquery.com/jquery-[version].min.js"></script>
	 <script	src="http://code.jquery.com/mobile/[version]/
		jquery.mobile-[version].min.js"></script>
</head>

<body>
	 ...app	content...
</body>
</html>

Identify	a	page	within	the	 <body> 	using	an	element	such	as	a	 <div> ,	and	a	suitable	identifying	attribute	
data-role="page" .

<div	data-role="page">
...
</div>

For	jQuery	mobile,	there	is	a	standard,	defined	pattern	we	can	use	for	our	app's	pages.

Basic	jQuery	Mobile	pattern	for	such	page	designs	includes	 div 	elements	with	additional,	defined	 data-role 	and	
role 	attributes	to	define	semantic	division	of	content.	For	example,

<div	data-role="header">...</div>

<div	role="main"	class="ui-content">...</div>

<div	data-role="footer"></div>

This	is	quasi-HTML5,	mimicking	the	semantic	structure	and	elements	for	standard	HTML5.	In	effect,	the	jQuery	mobile
attributes	are	replacing	the	standard	names	for	HTML5	semantic	elements.

An	initial,	sample	page	template	for	jQuery	mobile	is	as	follows,

<!DOCTYPE	html>
<html>
<head>
	 <title>Basic	App</title>
	 <meta	name="viewport"	content="width=device-width,	initial-scale=1">
	 <link	rel="stylesheet"	href="http://code.jquery.com/mobile/[version]/
		jquery.mobile-[version].min.css"	/>
	 <script	src="http://code.jquery.com/jquery-[version].min.js"></script>
	 <script	src="http://code.jquery.com/mobile/[version]/
		jquery.mobile-[version].min.js"></script>
</head>
<body>
		<!--	initial	page	-->
		<div	data-role="page">
			<!--	header	-->
	 	<div	data-role="header">
				<h3>Welcome</h3>
	 	</div>
			<!--	main	content	-->
	 	<div	role="main"	class="ui-content">
				<p>first	basic	app	content...</p>
	 	</div>
			<!--	footer	-->
	 	<div	data-role="footer">
				<h5>footer...</h5>
	 	</div>
		</div>
</body>
</html>

basic	page	template	-	multi-pages

To	help	identify	each	page,	we	add	an	 id 	attribute	with	a	unique	value.	These	 id 	attributes	can	then	be	used	to
easily	create	internal	links	between	our	so-called	pages.

For	example,	a	page	block	might	be	as	follows,

<div	data-role="page"	id="page1">
...
</div>

which	we	can	then	reference	as	follows

page	1

In	effect,	it's	just	like	working	with	internal	anchors	from	page	to	page.	A	template	for	multi-pages	might	be	as	follows,

<body>
		<!--	page1	-->

		<div	data-role="page"	id="page1">
				<div	data-role="header">
						<h3>Welcome	-	page	1</h3>
				</div><!--	/header	-->
				<div	role="main"	class="ui-content">
	 	 		<p>View	internal	page	-	page2</p>
				</div><!--	/content	-->
				<div	data-role="footer">
						<h5>footer	-	page	1</h5>
				</div><!--	/footer	-->
		</div><!--	/page1	-->

		<!--	page2	-->
		<div	data-role="page"	id="page2">
				<div	data-role="header">
						<h3>page	2</h3>
				</div><!--	/header	-->
				<div	role="main"	class="ui-content">
	 	 		<p>Return	to	page1</p>
				</div><!--	/content	-->
				<div	data-role="footer">
						<h5>footer	-	page	2</h5>
				</div><!--	/footer	-->
		</div><!--	/page2	-->
</body>

basic	page	template	-	pre-fetching	pages	&c.

jQuery	Mobile	gives	us	the	option	to	pre-fetch	pages	for	use	within	our	applications.

With	this	option,	we	are	effectively	telling	jQuery	Mobile	to	add	the	requested	pages	or	resources	to	the	DOM,	thereby
making	this	content	instantly	available	if	and	when	a	user	requests	that	page's	link.

We	can	pre-fetch	a	page	by	adding	the	 data-prefetch 	attribute	to	the	required	page	link.	We	set	the	value	for	this
attribute	to	a	boolean	value,	either	true	or	false.	This	tells	jQuery	Mobile	to	load	this	specified	page	within	the	current
DOM,	and	after	the	current	page	has	loaded.	This	content	is	fetched	after	the	 pagecreate 	event	has	been	triggered
by	the	current	page.

View	internal	page	-	page2

We	can	also	use	this	same	concept	within	our	JS	code,	thereby	programmatically	calling	the	required	page's	content
as	needed,	independent	of	a	given	link.	For	example,

$(":mobile-pagecontainer").pagecontainer("load",	pageUrl,	{	showLoadMsg:	false	}	
);

We're	using	the	Pagecontainer	widget's	method,	 load ,	to	fetch	an	external	page,	and	then	insert	it	into	the	DOM.
We	can	also	add	some	extra	options	to	this	fetched	content,	change	how	it's	output,	and	so	on.	For	example,

$(":mobile-pagecontainer").pagecontainer("load",	"confirm.html",	{	role:	"dialog"	
});

In	this	example,	we	are	fetching	a	page	 confirm.html ,	and	then	setting	its	output,	its	role,	to	a	dialog	box.

So,	our	selector	is	the	default	 :mobile-pagecontainer ,	which	equates	to	the	default	 <body> 	element	in	HTML.	It
is	the	parent	element	for	jQuery	Mobile	pages,	both	internal	and	external	examples.	We	can	also	customise	this	page
wrapper	from	 mobile-pagecontainer 	to	another	preferred	element.	In	essence,	we	can	change	the	page's	wrapper
from	the	default	 body 	to	a	custom	element	elsewhere	in	the	page.

Further	details	can	be	found	in	the

API	documentation	-	http://api.jquerymobile.com/pagecontainer/#method-load

basic	page	template	-	caching	the	DOM	(multi-page	apps)

One	of	the	underlying	issues	with	maintaining	the	DOM,	and	continually	adding	more	and	more	pages,	is	that	we	can
quickly	fill	a	browser's	memory.	This	can	subsequently	lead	to	the	browser	either	dramatically	slowing	down	or
potentially	crashing	due	to	a	lack	of	system	resources.

jQuery	Mobile	has	a	simple	way	to	handle	this	potential	issue.	As	we	load	a	page	using	Ajax,	jQuery	mobile	adds	a
note	that	this	new	page	needs	to	be	removed	from	the	DOM	as	soon	as	a	user	leaves	or	navigates	away.	Effectively,
this	clearing	of	the	DOM	cache	forms	part	of	the	page	events,	and	will	be	triggered	as	the	given	page	is	hidden.

Naturally,	it	doesn't	clear	the	home	page	for	the	app.	This	also	means	that	a	single	page	template	with	many	page
containers	will	not	be	affected	either.	It	simply	remains	in	the	cache	by	default.

If	a	user	then	tries	to	return	to	a	cleared	page,	for	example	one	we've	just	removed	from	the	DOM	cache,	the	browser
will	try	its	cache	for	an	existing	copy	of	the	page.	If	it	has,	indeed,	been	removed	then	the	browser	will	simply	re-fetch
the	file	from	the	server.

We	can	also	customise	such	settings	by	using	jQuery	Mobile's	option	to	programmatically	cache	pages,	which	then
become	instantly	available	if	a	user	decides	to	return	to	a	given	page.

We	can	also	set	an	attribute	on	a	single	page	to	ensure	that	it	is	cached	and	ready	for	use.

data-dom-cache="true"

Concept	of	dialogs

page2

So,	any	page	can	be	used	to	create	these	modal	dialogs	by	adding	an	attribute	for	dialog,

<div	data-role="page"	data-dialog="true"	id="page2">

By	setting	this	attribute,	we	are	informing	jQuery	Mobile	that	we	would	also	like	any	appropriate	styles	and	behaviours
adding	to	this	given	page.	For	example,	by	default	it	adds	styled	corners,	margins,	sets	the	background	properties	of
the	underlying	page,	and	adds	any	additional	buttons	or	controls	to	help	the	user.

basic	dialog	template

<body>
<!--	page1	-->
<div	data-role="page"	id="page1">
		<div	data-role="header">
				<h3>Welcome	-	page	1</h3>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p>View	internal	page	-	page2</p>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	1</h5>
		</div><!--	/footer	-->
</div><!--	/page1	-->

<!--	page2	-->
<div	data-role="page"	data-dialog="true"	id="page2">
		<div	data-role="header">
				<h3>page	2</h3>
		</div><!--	/header	-->

		<div	role="main"	class="ui-content">
				<p>Return	to	page1</p>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	2</h5>
		</div><!--	/footer	-->
</div><!--	/page2	-->
</body>

The	transition	for	this	dialog	will	use	the	default	fade	option.	We	can	also	explicitly	define	a	preferred	transition	effect,
e.g.

page2

This	transition	effect	can	be	specified	for	accessing	the	dialog,	and	then	exiting	the	dialog	as	well.	e.g.

Return	to	page1

So,	an	example	template	might	look	as	follows,

<body>
	 <!--	page1	-->
	 <div	data-role="page"	id="page1">
	 	 <div	data-role="header">
	 				<h3>Welcome	-	page	1</h3>
	 	 </div><!--	/header	-->
	 		<div	role="main"	class="ui-content">
	 	 	 <p>View	internal	page	-
								page2
						</p>
	 	 </div><!--	/content	-->
	 	 <div	data-role="footer">
	 				<h5>footer	-	page	1</h5>
	 	 </div><!--	/footer	-->
	 </div><!--	/page1	-->

	 <!--	page2	-->
	 <div	data-role="page"	data-dialog="true"	id="page2">
	 	 <div	data-role="header">
	 				<h3>page	2</h3>
	 	 </div><!--	/header	-->
	 	 <div	role="main"	class="ui-content">
	 	 	 <p>
								Return	to	page1
						</p>
	 	 </div><!--	/content	-->
	 	 <div	data-role="footer">
	 				<h5>footer	-	page	2</h5>
	 	 </div><!--	/footer	-->
	 </div><!--	/page2	-->
</body>

basic	dialog	template	-	close	dialog

When	we	close	an	open	modal	dialog,	the	default	is	to	return	to	the	current	page	within	the	app.	However,	for	a	'close'
link	we	can	also	be	explicit	in	the	redirect	reference/location.	We	might	set	the	close	link	to	the	previous	page,	another
link,	and	so	on.

n.b.	jQuery	Mobile	looks	for	a	defined	header	element	in	the	page.	If	present,	a	close	button	will	be	added	to	the	left
side	of	the	header	in	the	modal	dialog.	We	can,	of	course,	change	the	position	of	the	button	by	adding	the	following
attribute	to	the	dialog	container,

data-close-btn="right"

We	can	also	remove	this	default	button,

data-close-btn="none"

However,	if	we	do	need	or	want	to	add	a	cancel	button,	for	example,	jQuery	Mobile	offers	the	following	attribute,

data-rel="back"

One	of	the	nice	features	of	using	 back 	is	that	it	preserves	the	originating	transition.	It	is	not	necessary	to	specify	a
transition	for	the	cancel	link.

We	can	also	customise	the	text	for	our	close	button	either	programmatically	or	by	simply	setting	an	attribute	and	value
pairing.	The	button	itself	will	still	be	rendered	as	an	icon,	but	the	additional	text	will	be	readable	by	screen	readers	and
other	accessible	devices.	For	example,

data-close-btn-text="closed	text"

We	can	also	chain	dialogs	from	one	to	another,	and	so	on.	This	chaining	also	works	in	reverse.	One	of	the	notable
features	of	this	chaining	is	that	it	will	always	navigate	to	the	previous	dialog	until	the	originating	root	of

data-role="page"

is	once	more	reached.	This	mechanism	simply	ensures	logical,	consistent	navigation	between	dialogs	within	an	app's
navigation.

An	example	template	might	look	as	follows,

<body>
	 <!--	page1	-->
	 <div	data-role="page"	id="page1">
	 	 <div	data-role="header">
	 				<h3>Welcome	-	page	1</h3>
	 	 </div><!--	/header	-->
	 		<div	role="main"	class="ui-content">
	 	 	 <p>View	internal	page	-
								page2
						</p>
	 	 </div><!--	/content	-->
	 	 <div	data-role="footer">
	 				<h5>footer	-	page	1</h5>
	 	 </div><!--	/footer	-->
	 </div><!--	/page1	-->

	 <!--	page2	-->
	 <div	data-role="page"	data-dialog="true"	id="page2">
	 	 <div	data-role="header">
	 				<h3>page	2</h3>
	 	 </div><!--	/header	-->
	 	 <div	role="main"	class="ui-content">
	 	 	 <p>
								Cancel
						</p>
	 	 </div><!--	/content	-->
	 	 <div	data-role="footer">
	 				<h5>footer	-	page	2</h5>
	 	 </div><!--	/footer	-->
	 </div><!--	/page2	-->
</body>

basic	dialog	template	-	style	dialog

As	with	other	page	containers	and	elements,	we	can	customise	the	style	and	theming	for	our	dialogs.	We	can	set	an
attribute	on	the	dialog's	page	container,

data-theme="b"

which	then	allows	us	to	specify	theme	attributes	to	the	header,	content	or	footer	containers.	By	default,	jQuery	Mobile
include	two	default	style	themes,	a	or	b.	Basically,	these	come	down	to	dark	text	on	light	background,	and	the	reverse.

We	can	also	change	the	design	of	the	corners,	which	are	rounded	by	default,	or	add	a	custom	overlay	for	the	dialog.
It's	this	custom	overlay	swatch	that	really	allows	us	to	tailor	our	dialog	designs	as	needed.	We	can	manage	this
custom	design	with	standard	CSS,	and	set	this	using	a	class	on	the	originating	page	container	for	the	dialog.

For	example,

...
<!--	page2	-->
<div	data-role="page"	data-dialog="true"	data-theme="b"	id="page2">
		<div	data-role="header">
				<h3>page	2</h3>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p>Cancel</p>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	2</h5>
		</div><!--	/footer	-->
</div><!--	/page2	-->
...

We	can,	naturally,	also	modify	the	actual	size	and	dimensions	of	our	dialog	box.	By	default,	it	is	set	to	a	width	of	
92.5% 	with	a	 max-width:	500px 	of	500	pixels.	They've	also	added	a	default	top	margin	of	10%,	and	so	on.

Therefore,	the	default	CSS	is	as	follows,

.ui-dialog-contain	{
	 width:	92.5%;
	 max-width:	500px;
	 margin:	10%	auto	15px	auto;
	 padding:	0;
	 position:	relative;
	 top:	-15px;
}

We	can	simply	add	the	above	ruleset	to	our	CSS	stylesheet	and	then	override	as	required	per	design.

Navigation

For	the	purposes	of	mobile	development,	jQuery	Mobile's	navigation	support	thankfully	follows	an	asynchronous
pattern.

So,	navigation	in	jQuery	mobile,	for	example,	is	based	upon	loading	pages	into	the	DOM	using	AJAX.	This	will	modify
the	page's	content,	and	then	re-render	for	display	to	the	user.	It	will	also	include	a	set	of	aesthetically	pleasing,	and
useful,	animations	to	help	inform	the	user	of	changes	in	state,	and	therefore	appropriate	updates	in	the	content.

This	navigation	system	effectively	hijacks	a	link	within	a	page's	content	container,	and	then	routes	it	through	an	AJAX
request.	The	benefit	for	developers	is	a	particularly	useful,	and	almost	painless,	approach	to	asynchronous	navigation.
Most	of	the	time,	we	are	not	even	aware	of	this	updated	request.	In	spite	of	hijacking	the	link	request,	it	is	still	able	to
support	standard	concepts	such	as	anchors	and	use	of	the	back	button	without	breaking	the	coherence	and	logic	of

the	application.

Therefore,	jQuery	Mobile	is	able	to	load	and	view	groups	of	disparate	content	in	pages	within	our	initial	home
document.	In	essence,	the	many	combining	to	form	the	one	coherent	application.

Its	support	for	core	JavaScript	event	handling,	in	particular	for	URL	fragment	identifiers	with	 hashchange 	and	
popstate ,	allows	the	application	to	persist,	at	least	temporarily,	a	record	of	user	navigation	and	paths	through	the

content.	We	can	also	tap	into	this	internal	history	of	the	application,	and	again	hijack	certain	patterns	to	help	us	better
inform	the	user	about	state	changes,	different	paths,	content,	and	so	on.

example	navigation

The	following	demo	is	an	example	of	using	the	jQuery	Mobile	standard	navigate	method,	 $.mobile.navigate ,
which	is	used	as	a	convenient	way	to	track	history	and	navigation	events.

With	this	simple	example,	we	can	set	our	record	information	for	the	link,	effectively	any	useful	information	for	the	link
or	affected	change	in	state.	We	can	then	log	the	available	direction	for	navigation,	in	this	example	the	fact	we	can	go
back,	the	url	for	the	nav	state,	and	any	available	hash.	In	our	example,	the	simple	appended	hash	in	the	url,	 #nav1 .

What	this	allows	us	to	do	is	keep	a	clear	record	of	user	traversal	through	the	application,	log	it	as	required	by	given
state	changes,	and	then	use	it	to	inform	our	application's	logic,	our	user,	and	so	on.

Using	widgets

Within	our	app's	webview	container,	we	can	add	standard	HTML	elements	for	any	required	content	containers.

For	example,	standard	HTML	and	HTML5	elements	such	as	 p ,	 headings ,	 lists ,	 sections ,	and	so	on.

Thankfully,	we	don't	necessarily	have	to	build	the	whole	application	from	scratch.

jQuery	Mobile	includes	a	wide-range	of	pre-fabricated	widgets	we	can	add	to	our	applications.	These	are	naturally
touch-friendly,	and	include	collapsible	elements,	forms,	responsive	tables,	dialogs,	and	many	more.

using	widgets	-	listview

A	good	example	of	this	type	of	pre-fabricated	widget	is	a	listview.

jQuery	Mobile	helps	us	style,	render	and	then	manipulate	standard	data	output	and	collections,	including	rendering	of
lists	as	interactive,	animated	views.

These	lists	are	coded	with	a	 data-role 	attribute,	as	we	saw	earlier	with	a	page	value	for	a	data	role

data-role="listview"

This	allows	us	to	style	and	render	our	lists	with	additional	options	such	as	a	dynamic	search	filter.

using	widgets	-	listview	-	example

<!--	listview	example	-->
<div>
		<ul	data-role="listview">
				Cannes
				Marseille
				Monaco
				Nice
		
</div>

simple	listview	with	slide	transition

<!--	page3	-->
<div	data-role="page"	id="page3">
		<div	data-role="header">
				<h3>page	3</h3>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p><a	data-rel="back"	class="ui-btn">Return</p>
		<section	class="image-view">
				
		<section>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	3</h5>
		</div><!--	/footer	-->
</div><!--	/page3	-->

using	widgets	-	listview	-	add	filter

A	listview	can	be	a	lot	of	fun,	and	very	useful	for	easily	organising	our	data.

However,	we	can	also	use	a	listview	to	add	filtering	and	live	search	options	to	our	lists.

We	set	a	simple	client-side	filter	by	adding	an	attribute	for	 data-filter ,	and	then	set	the	value	to	 true

data-filter="true"

jQuery	Mobile	will	then	add	a	search	query	input	field	to	the	top	of	our	list	widget,	and	set	a	filter	for	the	entered	search
query.	Effectively,	it's	performing	a	pattern	match	using	a	partially	entered	string	against	strings	in	a	designated	list.	It
can	match	partial	fragments	of	a	list	item,	and	then	dynamically	filter	our	list	content.

We	can	also	set	some	default,	helpful	text	for	the	input	field.	Our	way	of	prompting	the	user	to	interact	with,	and
therefore	use	this	feature	correctly.

data-filter-placeholder="Search	Cities"

To	tidy	up	the	presentation	of	our	list,	we	can	also	add	an	inset	using	the	attribute

data-inset="true"

using	widgets	-	listview	-	adding	some	formatted	content

One	of	the	fun	aspects	of	working	with	a	framework	such	as	jQuery	Mobile,	and	others	such	as	the	excellent	Ionic
framework,	is	the	simple	way	we	can	organise	and	format	our	data	presentations	and	views.

For	example,	if	we	have	a	grouped	dataset,	we	can	still	present	it	using	lists.	However,	we	can	also	add	informative
headings,	links	to	different	categories	within	this	dataset,	and	simple	styling	to	help	differentiate	components	within	the
list	interface.

Therefore,	we	structure	the	list	as	normal,	with	sub-headings,	paragraphs,	and	so	on.	Then,	jQuery	Mobile	gives	us	a
simple	option	for	setting	certain	list	content	as	an	aside.	For	example,

<p	class="ui-li-aside">1	image</p>

There	are	many	similar	tweaks	and	additions	we	can	add	to	help	improve	organisation	and	rendering	of	list	data.
Further	details	can,	of	course,	be	found	in	the	jQuery	Mobile	API.

using	widgets	-	listview	-	example	2

<ul	data-role="listview"	data-inset="true">
		<li	data-role="list-divider"	role="heading">French	Cities
		
				
						<h3>Monaco</h3>
						<p>Principality	of	Monaco</p>
						<p>Monaco	is	a	sovereign	city-state...</p>
						<p	class="ui-li-aside">1	image</p>
				
		
		
				
						<h3>Nice</h3>
						<p>Located	in	the	south	of	France...</p>
				
		

References

jQuery	Mobile
jQuery	Mobile	1.4	Browser	Support
jQuery	Mobile	API
jQuery	Download	Builder
jQuery	ThemeRoller

https://jquerymobile.com/
https://jquerymobile.com/browser-support/1.4/
https://api.jquerymobile.com/
http://jquerymobile.com/download-builder/
http://themeroller.jquerymobile.com/

