
Comp 322/422 - Software Development for
Wireless and Mobile Devices

Fall Semester 2019 - Week 11

Dr Nick Hayward

React JavaScript Library - non-ES6

state - intro - part 1

a component in React is able to house state

State is inherently different from props because it is internal to

the component

it is particularly useful for deciding a view state on an element

eg: we could use state to track options within a hidden list or menu

track the current state

change it relative to component requirements

then show options based upon this amended state

NB: considered bad practice to update state directly using

this.state
use the method this.setState

try to avoid storing computed values or components directly in

state

focus upon using simple data

directly required for given component to function correctly

considered good practice to perform required calculations in the

render function

try to avoid duplicating prop data into state
use the props data instead

React JavaScript Library - non-ES6

state - intro - part 2

var EditButton = React.createClass({

 getInitialState: function() {

 return {

 editShow: true

 };

 },

 render: function() {

 if (this.state.editShow == false) {

 alert('edit button will be turned off...');

 }

 return (

 <button className="button edit" onClick={this.handleClick}>Edit</button>

);

 },

 handleClick: function() {

 //handle click...

 alert('edit button clicked');

 //set state after button click

 this.setState({ editShow: false });

 }

});

React Native - State

component and constructor

// abstracted component for rendering *tape* text

class EditButton extends Component {

 // instantiate object - expects props parameter, e.g. text & value

 constructor(props) {

 // calls parent class' constructor with `props` provided - i.e. uses Componen

 super(props);

 // set initial state - e.g. text is shown

 this.state = { editShow: true };

 }

 // custom function to modify state on button click

 handleClick = () => {

 //set state after button click

 this.setState({ editShow: false });

 }

 // component render - check state of component...

 render() {

 if (this.state.editShow == false) {

 return (

 <Text style={styles.content}>

 Button has been removed...

 </Text>

);

 } else {

 return (

 <View style={styles.buttonBox}>

 <Button

 onPress={this.handleClick}

 title={this.props.title}

 color='#585459'

 />

 </View>

);

 }

 }

}

Image - React Native - Set State

component and constructor

React Native - set state - part 1

Image - React Native - Set State

component and constructor

React Native - set state - part 2

React JavaScript Library - non-ES6

state - intro - part 3

when designing React apps, we often think about

stateless children and a stateful parent

A common pattern is to create several stateless components that just

render data, and have a stateful component above them in the

hierarchy that passes its state to its children via props.

React documentation

need to carefully consider how to identify and implement this type

of component hierarchy

1. Stateless child components

components should be passed data via props from the parent

to remain stateless they should not manipulate their state

they should send a callback to the parent informing it of a change, update etc

arent will then decide whether it should result in a state change, and a re-rendering
of the DOM

2. Stateful parent component
can exist at any level of the hierarchy

does not have to be the root component for the app

instead can exist as a child to other parents

use parent component to pass props to its children

maintain and update state for the applicable components

React Native - Components

stateful versus presentational

with React and React Native

compose existing components

as well as create our own custom components

two important concepts and component types in React and React

Native

stateful

stateful is a central point in memory

used to store information about the app or a component's state

also maintains the ability to modify and update

stateless

stateless will calculate its internal state

it should not directly change or mutate this state

inherent benefit is that we now maintain a clear, transparent record

given the same inputs, it will always return the same output

React Native - Components

presentational

presentational components in a UI

often a reflection of passed or received data

e.g. a list output of data or some text output for the user to read...

React Native UI composed of many smaller blocks

each block should also be reusable, e.g.

class Heading extands Component {

 render() {

 return(

 <View style={styles.headingBox}>

 <Text style={styles.heading}>

 { this.props.text }

 </Text>

 </View>

)

 }

}

this component may now be reused for headings in the UI

component itself does not have any state

simply a presentational or functional component

component is a pure function of props passed from its parent

it does not mutate its arguments

React Native - Components

presentational and functional

consider such presentational components from their pure

functional context

rewrite our Heading component as follows,

function Heading(props) {

 return (

 <View style={styles.headingBox}>

 <Text style={styles.heading}>

 { this.props.text }

 </Text>

 </View>

)

}

React JavaScript Library - non-ES6

state - intro - part 4

1. props vs state

in React, we can often consider two types of model data

includes props and state

most components normally take their data from props

allows them to render the required data

as we work with users, add interactivity, and query and respond to servers

we also need to consider the state of the application

state is very useful and important in React

also important to try and keep many of our components stateless

2. state

React considers user interfaces, UIs, as simple state machines

acting in various states and then rendering as required

in React, we simply update a component's state

then render the new corresponding UI

React JavaScript Library - non-ES6

state - intro - part 5

1. How state works

if there is a change in data in the application

perhaps due to a server update or user interaction

quickly and easily inform React by calling setState(data, callback)

this method allows us to easily merge data into this.state
re-renders the component

as re-rendering is finished

optional callback is available and is called by React

this callback will often be unnecessary

it's still useful to know it is available

React JavaScript Library - non-ES6

state - intro - part 6

2. In state

try to keep data in state to a minimum

consider minimal possible representation of an application's state

helps build a stateful component

state should try to just contain minimal data

data required by a component's event handlers to help trigger a UI update

if and when they are modified

such properties should also normally only be stored in

this.state

as we render the updated UI

simply compute required information in the render() method based on this
state
avoids need to keep computed values in sync in state

instead relying on React to compute them for us

3. out of state

in React, this.state should only contain minimal data

minimum necessary to represent an application's UI state

should contain

computed value/values

React components

duplicated data from props

React JavaScript Library - non-ES6

state - an example app - part 1

a simple app to allow us to test the concept of stateful parent and

stateless child components

resultant app outputs two parallel div elements

allow a user to select one of the available categories

then view all of the available authors

//static test data...

var AUTHORS = [

 {id:1, category: 'greek', categoryId:1, author: 'Plato'},

 {id:2, category: 'greek', categoryId:1, author: 'Aristotle'},

 {id:3, category: 'greek', categoryId:1, author: 'Aeschylus'},

 {id:4, category: 'roman', categoryId:2, author: 'Livy'},

 {id:5, category: 'greek', categoryId:1, author: 'Euripides'},

 {id:6, category: 'roman', categoryId:2, author: 'Ptolemy'},

 {id:7, category: 'greek', categoryId:1, author: 'Sophocles'},

 {id:8, category: 'roman', categoryId:2, author: 'Virgil'},

 {id:9, category: 'roman', categoryId:2, author: 'Juvenal'}

];

start with some static data to help populate our app

categoryId used to filter unique categories

again to help get all of our authors per category

React JavaScript Library - non-ES6

state - an example app - part 2

for stateless child components

need to output a list of filtered, unique categories

then a list of authors for each selected category

first child component is the CategoryList
filters and renders our list of unique categories

onClick attribute is included

state is therefore passed via callback to the stateful parent

React JavaScript Library

state - an example app - part 3

the component is accepting props from the parent component

then informing this parent of a required change in state

change reported via a callback to the onCategorySelected method

does not change state itself

it simply handles the passed data as required for a React app

//output unique categories from passed data...

var CategoryList = React.createClass({

 render: function() {

 var category = [];

 return (

 <div id="left-titles" className="col-6">

 {this.props.data.map(function(item) {

 if (category.indexOf(item.category) > -1) {

 } else {

 category.push(item.category);

 return (

 <li key={item.id} onClick={this.props.onCategorySelected.bind(null, it

 {item.category}

);

 }}, this)}

 </div>

);

 }

});

React JavaScript Library - non-ES6

state - an example app - part 4

need to consider our second stateless child component

renders the user's chosen authors per category

user clicks on their chosen category

a list of applicable authors is output to the right side div

var AuthorList = React.createClass({

 render: function() {

 return (

 <div id="right-titles" className="col-md-6 col-sm-6 col-xs-6">

 {this.props.authors.map(function(item) {

 return (

 <li key={item.id}>{item.author}

);

 })

 }

 </div>

);

 }

});

this component does not set any state

simply rendering the passed props data for viewing

React JavaScript Library - non-ES6

state - an example app - part 5

to handle updates to the DOM, we need to consider our

stateful parent

this component passes the app's data as props to the children

handles the setting and updating of the state for app as well

as noted in the React documentation,

State should contain data that a component's event handler may

change to trigger a UI update.

for this example app

only need to store the selectedCategoryAuthors in state
enables us to update the UI for our app

React JavaScript Library - non-ES6

state - an example app - part 6

var Container = React.createClass({

 getInitialState: function() {

 return {

 selectedCategoryAuthors: this.getCategoryAuthors(this.props.defaultCatego

 };

 },

 getCategoryAuthors: function(categoryId) {

 var data = this.props.data;

 return data.filter(function(item) {

 return item.categoryId === categoryId;

 });

 },

 render: function() {

 return (

 <div className="container col-md-12 col-sm-12 col-xs-12">

 <CategoryList data={this.props.data} onCategorySelected={this.onCategorySel

 <AuthorList authors={this.state.selectedCategoryAuthors} />

 </div>

);

 },

 onCategorySelected: function(categoryId) {

 this.setState({

 selectedCategoryAuthors: this.getCategoryAuthors(categoryId)

 });

 }

});

React JavaScript Library - non-ES6

state - an example app - part 7

our stateful parent component sets its initial state

including passed data and app's selected category for authors

helps set a default state for the app

we can then modify as a user selects their chosen category

callback for this user selected category is handled in the

onCategorySelected method

updates the app's state for the chosen categoryId
then leads to the app re-rendering the DOM for any changes

we still have computed data in the app's state
as noted in the React documentation,

this.state should only contain the minimal amount of data

needed to represent your UIs state...

we should now move our computations to the render method of

the parent component

then update state accordingly

React JavaScript Library - non-ES6

state - an example app - part 8

state is now solely storing the categoryId for our app

can be modified and the DOM re-rendered correctly

var Container = React.createClass({

 getInitialState: function() {

 return {

 selectedCategoryId: this.props.defaultCategoryId

 };

 },

 render: function() {

 var data = this.props.data;

 var selectedCategoryAuthors = data.filter(function(item){

 return item.categoryId === this.state.selectedCategoryId;

 }, this);

 return (

 <div className="container col-md-12 col-sm-12 col-xs-12">

 <CategoryList data={this.props.data} onCategorySelected={this.onCategoryS

 <AuthorList authors={selectedCategoryAuthors} />

 </div>

);

 },

 onCategorySelected: function(categoryId) {

 this.setState({selectedCategoryId: categoryId});

 }

});

React JavaScript Library - non-ES6

state - an example app - part 9

we can then load this application

passing data as props to the Container
data from JSON Authors

var buildLibrary = React.render (

 <Container data={AUTHORS} defaultCategoryId='1' />,

 document.getElementById('library')

);

DEMO - state example

http://linode4.cs.luc.edu/teaching/cs/demos/424/week13/react-state-basic/

Fun Exercise - State Usage

Watch the following gaming demo,

Blocks

Then, consider the following relative to state

how is state being used to initially define the application?

how is state being updated to modify the game?

how is state being used to keep scores in the game?

how is state used to define difficulty levels in the game?

http://linode4.cs.luc.edu/teaching/cs/demos/422/gaming/color-blocks/

React Native - stateful example - part 1

also create a simple example with React Native components

start with a standard component structure for a stopwatch

class StopWatch extends Component {

 render() {

 return (

 <View>

 <Text>Stopwatch</Text>

 </View>

)

 }

}

React Native - Components

stateful example - part 2

need to define the initial state for this component

couple of options, including

constructor and class properties

e.g. constructor usage,

constructor(props) {

 super(props);

 this.state = {

 seconds: 0

 };

}

React Native - Components

stateful example - part 3

also create additional getter methods for other stopwatch values,

e.g. minutes.

get watchMinutes() {

 return (

 this.state.seconds / 60

)

}

then reference seconds and minutes in the render function, e.g.

render() {

 return (

 <View>

 <Text>Stopwatch: {`${this.watchMinutes} : ${this.state.seconds}`}</Text>

 </View>

)

}

React Native - Components

stateful example - part 4

still need to inform React of a change in state

for each second that passes whilst the stopwatch is active

the state is immutable

we can only update it by executing the setState function

in the component, add the following for a second counter for the

stopwatch

setInterval(() => {

 this.setState({

 seconds: this.state.seconds + 1

 });

}, 1000);

React JavaScript Library

state - minimal state - part 1

to help make our UI interactive

use React's state to trigger changes to the underlying data model of an
application

need to keep a minimal set of mutable state

DRY, or don't repeat yourself

often cited as a good rule of thumb for this minimal set

need to decide upon an absolute minimal representation of the

state of the application

then compute everything else as required

eg: if we maintain an array of items

common practice to calculate array length as needed instead of maintaining a
counter

React JavaScript Library

state - minimal state - part 2

as we develop an application with React

start dividing our data into logical pieces

then start to consider which is state

for example,

is it from props?

if yes, this is probably not state in React

does it update or change over time? (eg: due to API updates etc)

if yes, this is probably not state
can you compute the data based upon other state or props in a
component?

if yes, it is not state

need to decide upon our minimal set of components that mutate,

or own state

React is based on the premise of one-way data flow down the hierarchy of
components

can often be quite tricky to determine

initially, we can check the following

each component that renders something based on state

determine the parent component that needs the state in the hierarchy

a common or parent component should own the state
NB: if this can't be determined
simply create a basic component to hold this state
add component at the top of the state hierarchy

React Native - Lifecycle methods

mounting

create stateful components in React and React Native

monitor and use various lifecycle hooks

in addition to the setState() method...

start by considering component rendering

better known as mounting

various methods to cover each stage of component lifecycle

componentWillMount
called immediately before component mounting

not recommended by Facebook's own documentation

better to use constructor for setting values &c.

calls to setState in this method will not trigger re-rendering

componentDidMount
called after component mounting

use this method to initialise timers, any event listeners, fetch data, &c.

calls to setState will trigger re-render

componentWillUnmount
called just before the component is unmounted and destriyed

normally use this method for component cleanup &c.

e.g. removing timers, stopping data requests, API calls &c.

React Native - Lifecycle methods

updating

components in React will be updated as and when their state is

changed

or if the parent component passes different props

we can take advantage of this data flow and pattern

executing any required logic before a component gets updated...

React provides methods for such points in a components lifecycle

thereby allowing us to handle updates

componentWillReceiveProps
useful method to trigger a change in state due to a change in props

may also use this method to help collate changes in props

i.e. before and after updates, e.g.

...

componentWillReceiveProps(updatedProps) {

 if (updatedProps !== this.props) {

 ...

 }

}

shouldComponentUpdate
React will usually re-render a component for each change in state

this method allows us to specify whether a component should update, how, &c.

e.g. re-render a component only for a specific update

return false from this method - a component will not be re-rendered

React Native - Platform Structure

cross-platform

React Native gives us a default directory and script structure

part of the structure for a newly initialised app

modify stucture as app grows in complexity and scope

React Native provides app initialisation files

index.js & App.js

create a custom directory for app, e.g.

src or app &c.

add directories for UI components, assets, scripts for APIs...

import App.js from src &c. directory

import App from './src/App';

React Native - Platform Structure

Android & iOS

then start to add platform specific requirements

including components, styles, images...

customisation is being encouraged with the Platform
component. e.g.

import { Platform } from 'react-native';

add checks to the logic of our app to add platform specific

customisations,

const titles = Platform.select({

 ios: 'iOS custom title...',

 android: 'Android custom title...',

});

to use this in our app's code

do not need to specify iOS or Android

simply add the required output for titles. e.g.

...

<View>

 <Text>{titles}</Text>

</View>

...

React Native - component usage

StatusBar

add customisation to our app's Status Bar

top bar with network icon, data, battery status, notification icons &c

various customisation options for each platform

animate this bar

modify its colour

add custom style to match the current mode or status within our app

simple modification is to update the background colour

from light to dark, and vice versa...

e.g. inform user of status change by animating the colour change and update

need to import the StatusBar component

add an animated prop for the component

and specify a star for the bar itself

e.g. set the background colour of the bar to white

<StatusBar animated barStyle="light-content" />

we might also set the barStyle to dark using the value

dark-content
sets colour of status bar text

we can only use the barStyle prop with iOS

for Android, we can set props for backgroundColor and

translucent

additional options for working with the StatusBar, including static

functions

StatusBar

https://facebook.github.io/react-native/docs/statusbar.html

Image - React Native - Component Usage

StatusBar

React Native - StatusBar

React Native - component usage

images

use Image component to add images

and various static resources as well

Image component works with local and remote sources

able to fetch remote images from a specified URL or server address

...

<Image

 style={styles.image}

 resizeMode="contain"

 source={{

 uri: 'http://www.test.com/images/image.png'

 }}

/>

...

or

<Image

 style={styles.image}

 resizeMode="contain"

 source={require('./images/camel-icon.png')}

/>

resizeMode prop may accept various values to help with layout

and design

cover, contain, stretch, repeat (only iOS), center

also check and use additional lifecycle props with images, including

onLoad
onLoadEnd
onLoadStart

also get the size of a specifed image before rendering it to the View

Image.getSize

Image - React Native - Component Usage

Image component

React Native - Image component

React Native - component usage

activity indicator

ActivityIndicator component gives us a default spinning

loader for an app

a small default component

useful for async loading, animations...

in addition to standard View props - also accepts the following

animating - boolean value to determine whether to spin or not

color - specify the foreground colour of the spinner

size - pass small or large string for iOS, and a size value for Android

React Native - component usage

activity indicator - example

might want to use the ActivityIndicator to delay showing

an image

add a property to state - use as a simple boolean check for loading

of the image

initial state set as follows,

state = {

 showImage: false,

 loading: false

}

image is not shown by default

and the ActivityIndicator is not visible or active either

create a function to allow us to update the state

will show the activity indicator and image

we're using ES6 classes for these examples

need to start binding our functions as we pass them as props

e.g.

// instantiate object

constructor(props) {

 super(props);

 // bind function

 this.showImage = this.showImage.bind(this);

}

showImage function can now be added

showImage() {

 this.setState({

 loading: true

 });

 setTimeout(() => {

 this.setState({

 showImage: true,

 loading: false

 })

 }, 2500)

}

Image - React Native - Component Usage

ActivityIndicator component - part 1

React Native - ActivityIndicator component

Image - React Native - Component Usage

ActivityIndicator component - part 2

React Native - ActivityIndicator component

Image - React Native - Component Usage

ActivityIndicator component - part 3

React Native - ActivityIndicator component

React Native - component usage

custom modal

React Native also supports a Modal component by default

use it for success messages, feedback or prompts to a user, &c.

also nest various child components to create the necessary output

Modal component will accept the following props

animationType

Transparent

Visible

onShow

also some custom props for each mobile platform

e.g. presentationStyle for iOS

React Native - component usage

custom modal - example

...

state = {

 modalVisible: true,

}

setModalVisible(visible) {

 this.setState({modalVisible: visible});

}

<Modal

 animationType="slide"

 transparent={false}

 visible={this.state.modalVisible}

 >

 <View style={styles.modal}>

 <TouchableHighlight onPress={() => {

 this.setModalVisible(!this.state.modalVisible)

 }}>

 <Text style={styles.modalClose}>close</Text>

 </TouchableHighlight>

 <Text style={styles.modalText}>Greetings from Egypt</Text>

 </View>

</Modal>

Image - React Native - Component Usage

custom modal component - part 1

React Native - modal component - show

Image - React Native - Component Usage

custom modal component - part 2

React Native - modal component - show with transparency

Image - React Native - Component Usage

custom modal component - part 3

React Native - modal component - closed

Mobile Design & Development - UI
Components & Usage

Fun Exercise

Four groups, two apps

Fashion -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/fashion/

Travel Notes -

http://linode4.cs.luc.edu/teaching/cs/demos/422/videos/travelnotes/

For each app, consider the following

define UI components for the app?

which components may be reused to create different effects?

which components could be abstracted to extend a parent

component?

how is the UI influenced by the use of such components?

~ 10 minutes

References

React DevTools

React Native - Layout Props

React Native - StatusBar

https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/statusbar.html

