
Comp 322/422 - Software Development for Wireless
and Mobile Devices

Fall Semester 2019 - Week 4

Dr Nick Hayward

Image - Designing our app

Designing our app - fundamentals are important

Video - Pyramid builders

Minions Pyramid Builders - Source: YouTube

Minions (2015) PyramidMinions (2015) Pyramid

https://www.youtube.com/watch?v=EklZzSVaQNs
https://www.youtube.com/watch?v=EklZzSVaQNs
https://www.youtube.com/channel/UC0L0KUZRoSh0Xt7UL5xFnsA

Extra notes - mobile considerations

Extra design notes will start to be added to the

course website, GitHub...e.g.

design mockups

design and interface

design and data

...

& extra notes on JS &c.

Mobile Design & Development - Data Usage and
Persistency

Fun Exercise

Four apps, one per group

Books -

http://linode4.cs.luc.edu/teaching/cs/demos/422/videos/week4/books/

Cinema -

http://linode4.cs.luc.edu/teaching/cs/demos/422/videos/week4/cinema/

Plants -

http://linode4.cs.luc.edu/teaching/cs/demos/422/videos/week4/plants/

Travel -

http://linode4.cs.luc.edu/teaching/cs/demos/422/videos/week4/travel/

For your assigned app, consider the following

UI and UX in the app that requires data loading

local or remote

how to update this data?

required data persistency in the app

local or remote

temporary or long-term

account or session

~ 10 minutes

Cordova app - API plugin examples - plugin test 2

plugins - add camera plugin

now add the camera plugin to our test application

two ways we can add camera functionality to our application

use the camera plugin

use the more generic Media Capture API

main differences include

camera plugin focuses on camera capture and functionality

media capture includes additional options such as video and audio recording

add the camera plugin using the following Cordova CLI command

cordova plugin add cordova-plugin-camera

provides standard navigator object

enables taking pictures, and choose images from local image library

Image - API Plugin Tester - Home

API Plugin Tester - initial home page

Image - API Plugin Tester - Camera

API Plugin Tester - initial camera page

Cordova app - API plugin examples - plugin test 2

plugins - add camera logic

basic UI is now in place

start to add some logic for taking photos with the device's camera

need to be able to get photos from the device's image gallery

app's logic in initial plugin.js file

handlers for the tap events

a user tapping on the takePhoto button

then the options in the photoSelector

take a photo with the camera

get an existing photo from the gallery

use the onDeviceReady() function

add our handlers and processors for both requirements

add functionality for camera and gallery components

Cordova app - API plugin examples - plugin test 2

plugins - add camera logic

add our handlers for the tap events

initial handlers for takePhoto, cameraPhoto, and galleryPhoto

e.g.

let shutter = document.getElementById('takePhoto');

playButton.addEventListener('touchstart', takePhoto, false);

function takePhoto() {

 // show modal for camera options...

 // different call relative to chosen UI option...

}

Image - API Plugin Tester - Camera

API Plugin Tester - camera photo selector

Cordova app - API plugin examples - plugin test 2

plugins - add camera logic

capture an image using this plugin with the native device's camera

hardware

use the provided navigator object for the camera

then call the getPicture function

also specify required callback functions for the camera

and add some required options for quality...

//Use from Camera

navigator.camera.getPicture(onSuccess, onFail, {

 quality: 50,

 sourceType: Camera.PictureSourceType.CAMERA,

 destinationType: Camera.DestinationType.FILE_URI

});

quality option has been reduced to 50 for testing

choose a value between 0 and 100 for our final application

100 being original image file from the camera

option for destinationType now defaults to FILE_URI could be

changed to DATA_URL
NB: DATA_URL option can crash an app due to low memory, system resources...

returns a base-64 encoded image

then render in a chosen format such as a JPEG

Cordova app - API plugin examples - plugin test 2

plugins - add camera logic

two callback functions are onSuccess and onFail
set logic for returned camera image and any error message

function onSuccess(imageData) {

 //JS selector...

 var image = document.getElementById('imageView');

 image.src = imageData;

}

function onFail(message) {

 alert('Failed because: ' + message);

}

onSuccess function accepts a parameter for the returned image data

using returned image data to output and render our image in the test

imageView

onFail function simply outputting a returned error message

we can use these two callback functions to perform many different tasks

we can pass the returned image data to a save function, or edit option...

they act like a bridge between our own logic and the native device's camera

Image - API Plugin Tester - Camera

API Plugin Tester - image rotated

Cordova app - API plugin examples - plugin test 2

plugins - update camera logic

returned an image from the camera

update our application to select an image from gallery application

add a conditional check to our getPhoto() function

allows us to differentiate between a camera or gallery request

navigator.camera.getPicture(onSuccess, onFail, {

 sourceType: Camera.PictureSourceType.PHOTOLIBRARY,

 destinationType: Camera.DestinationType.FILE_URI

});

update in the sourceType from CAMERA to PHOTOLIBRARY

returned image respects original orientation of gallery image

Image - API Plugin Tester - Camera

API Plugin Tester - image from gallery

Cordova app - API plugin examples - plugin test 2

plugins - fix camera logic

need to fix the orientation issue with the returned image from the camera

options for this plugin make it simple to update our logic for this

requirement

add a new option for the camera

correctOrientation: true

ensures that the original orientation of the camera is enforced

updated logic is as follows

//Use from Camera

navigator.camera.getPicture(onSuccess, onFail, {

 quality: 50,

 correctOrientation: true,

 sourceType: Camera.PictureSourceType.CAMERA,

 destinationType: Camera.DestinationType.FILE_URI

});

Image - API Plugin Tester - Camera

API Plugin Tester - correct image orientation

Cordova app - API plugin examples - plugin test 2

plugins - camera updates

continue to add many other useful options

specifying front or back cameras on a device

type of media to allow

scaling of returned images

edit options...

in the app logic, also need to abstract the code further

too much repetition in calls to the navigator object for the camera

then add more options and features

save, delete, edit options

organise our images into albums

add some metadata for titles etc

add location tags for coordinates...

Data considerations in mobile apps

worked our way through Cordova's File plugin

tested local and remote requests with JSON

initial considerations for working with LocalStorage

many other options for data storage in mobile applications

IndexedDB

hosted NoSQL options, such as Redis and MongoDB

Firebase

query hosted remote SQL databases

and so on...

Cordova app - IndexedDB

intro

browser storage wars of recent years

IndexedDB was crowned the winner over WebSQL

what do we gain with IndexedDB?

useful option for developers to store relatively large amounts of client-side data

effectively stores data within the user's webview/browser

useful storage option for network apps

a powerful, and particularly useful, indexed based search API

IndexedDB differs from other local browser-based storage options

localStorage is generally well supported

limited in terms of the total amount of storage

no native search API

different solutions for different problems

no universal best fit for storage...

browser support for mobile and desktop

Can I use___?

Cordova plugin to help with IndexedDB support

MSOpenTech - cordova-plugin-indexeddb

http://caniuse.com/#feat=indexeddb
https://www.npmjs.com/package/cordova-plugin-indexeddb

Cordova app - IndexedDB - data test 2

setup and test - part 1

testing our IndexedDB example with Cordova and Android

perform our standard test for the deviceready event

going to add a check for IndexedDB support and usage

in onDeviceReady() function

add a quick check for IndexedDB support in the application's webview

 if("indexedDB" in window) {

 console.log("IndexedDB supported...");

 } else {

 console.log("No support...");

 }

Android support is available...

Image - IndexedDB Support

DataTest2 - test IndexedDB support in webview

Image - IndexedDB Support

DataTest2 - test IndexedDB support in chrome

Cordova app - IndexedDB - data test 2

setup and test - part 2

update this check to ensure we have a quick reference later

//set variable for IndexedDB support

var indexedDBSupport = false;

//check IndexedDB support

if("indexedDB" in window) {

 indexedDBSupport = true;

 console.log("IndexedDB supported...");

} else {

 console.log("No support...");

}

create initial variable to store the boolean result

check variable after deviceready event has fired and returned

successfully

Cordova app - IndexedDB - data test 2

database - part 1 - getting started

start to build our IndexedDB database

database is local to the browser,

only available to users of the local, native app

IndexedDB databases follow familiar pattern of read and write privileges

eg: browser-based storage options, including localstorage

create databases with the same name, and then deploy them to different

apps

remain domain specific as well

first thing we need to do is create an opening to our database

var openDB = indexedDB.open("422test", 1);

creating a variable for our database connection

specifying the name of the DB and a version

open request to the DB is an asynchronous operation

Cordova app - IndexedDB - data test 2

database - part 2 - getting started

open request to the DB is an asynchronous operation

add some useful event listeners to help with our application

success, error, upgradeneeded, `blocked

upgradeneeded
event will fire when the DB is first opened within our application

also if and when we update the version number for the DB

blocked
fires when a previous or defunct connection to the DB has not been closed

Cordova app - IndexedDB - data test 2

database - part 3 - create

test creating a new DB

then checking persistence during application loading and usage

if(indexedDBSupport) {

 var openDB = indexedDB.open("422test",1);

 openDB.onupgradeneeded = function(e) {

 console.log("DB upgrade...");

 }

 openDB.onsuccess = function(e) {

 console.log("DB success...");

 db = e.target.result;

 }

 openDB.onerror = function(e) {

 console.log("DB error...");

 console.dir(e);

 }

}

console.log() - outputs a string representation

console.dir() - prints a navigable tree

Image - IndexedDB Support

DataTest2 - test IndexedDB open - first app load

Cordova app - IndexedDB - data test 2

database - part 4 - success

performed a check to ensure that IndexedDB is supported

if yes, open a connection to the DB

also added checks for three events, including upgrade, onsuccess, and errors

now ready to test the success event

event is passed a handler via target.result

...

openDB.onsuccess = function(e) {

 console.log("DB success...");

 db = e.target.result;

}

...

handler is being stored in our global variable db

run this test and check log output

outputs initial connection and upgrade status

then the success output for subsequent loading of the application

Image - IndexedDB Support

DataTest2 - test IndexedDB open - after first app load

Cordova app - IndexedDB - data test 2

database - part 5 - data stores

now start building our data stores in IndexedDB

IndexedDB has a general concept for storing data

known as Object Stores

conceptually at least, known as (very) loose database tables

within our object stores

add some data, plus a keypath, and an optional set of indices (indexes)

a keypath is a unique identifier for the data

Indices help us index and retrieve the data

object stores created during upgradeneeded event for the current

version

created when the app first loads

create object stores as part of this upgradeneeded event

if we want to upgrade our object stores

update version

upgrade the object store using the upgradeneeded event

Cordova app - IndexedDB - data test 2

database - part 6 - data stores

update our upgrade event to include the creation of our required object

stores

...

openDB.onupgradeneeded = function(e) {

 console.log("DB upgrade...");

 //local var for db upgrade

 var upgradeDB = e.target.result;

 if (!upgradeDB.objectStoreNames.contains("422os")) {

 upgradeDB.createObjectStore("422os");

 console.log("new object store created...");

 }

}

...

check a list of existing object stores

list of existing object stores available in the property objectStoreNames

check this property for our required object store using the contains
method

if required object store unavailable we can create our new object store

listen for result from this synchronous method

as a user opens our app for the first time

the upgradeneeded event is run

code checks for an existing object store

if unavailable, create a new one

then run the success handler

Image - IndexedDB Support

DataTest2 - test IndexedDB - create object store

Cordova app - IndexedDB - data test 2

database - part 7 - extra data stores

start to add further object stores

can't simply create a new object store due to the upgradeneeded
event

increment the version number for the current database

thereby invoking the upgradeneeded event

reate our new object store using the same pattern

var openDB = indexedDB.open("422test",2);

openDB.onupgradeneeded = function(e) {

 console.log("DB upgrade...");

 //local var for db upgrade

 var upgradeDB = e.target.result;

 if (!upgradeDB.objectStoreNames.contains("422os")) {

 upgradeDB.createObjectStore("422os");

 console.log("new object store created...");

 }

 if (!upgradeDB.objectStoreNames.contains("422os2")) {

 upgradeDB.createObjectStore("422os2");

 console.log("new object store 2 created...");

 }

}

Image - IndexedDB Support

DataTest2 - test IndexedDB - initial object stores

Cordova app - IndexedDB - data test 2

database - part 8 - add data

our database currently has two object stores

now start adding some data for our application

IndexedDB allows us to simply store our objects in their default structure

simply store JavaScript objects directly in our IndexedDB database

use transactions when working with data and IndexedDB

transactions help us create a bridge between our app and the current

database

allowing us to add our data to the specified object store

a transaction includes two arguments

first for the object store

second is the type of transaction

choose either readonly or readwrite

var dbTransaction = db.transaction(["422os"],"readwrite");

Cordova app - IndexedDB - data test 2

database - part 9 - add data

use transaction to retrieve object store for our data

requesting the 422os in this example

var dataStore = dbTransaction.objectStore("422os");

add some data using the new datastore

// note

var note = {

 title:title,

 note:note

}

// add note

var addRequest = dataStore.add(note,key);

for each object we can define the underlying naming schema

best fit our applications

then add our object, with an associated key, to our dataStore

Cordova app - IndexedDB - data test 2

database - part 10 - add data

now added an object to our object store

request is asynchronous

attach additional handlers for returned result

add a success and error handler

// success handler

addRequest.onsuccess = function(e) {

 console.log("data stored...");

 // do something...

}

// error handler

addRequest.onerror = function(e) {

console.log(e.target.error.name);

// handle error...

}

Cordova app - IndexedDB - data test 2

database - part 11 - add data

add a form for the note content and title

set a save button to add the note date to the IndexedDB

bind event handler to save button for click

submit add request to IndexedDB

store object data

<form id="noteForm">

 <div class="ui-field-contain">

 <label for="noteName">Note Title</label>

 <input type="text" id="noteName" name="noteName"></input>

 </div>

 <div class="ui-field-contain">

 <label for="noteContent">Note Content</label>

 <input type="text" id="noteContent" name="noteContent"></input>

 </div>

 <div data-role="controlgroup" data-type="horizontal">

 <input type="button" id="saveNote" data-icon="action" value="Save Note" data-inline="tr

 </div>

</form>

Cordova app - IndexedDB - data test 2

database - part 12 - add data handlers

now add our event handler for the save button

handler gets note input from note form

passes the data to the saveNote() function

// handler for save button

$("#saveNote").on("tap", function(e) {

 e.preventDefault();

 var noteTitle = $("#noteName").val();

 var noteContent = $("#noteContent").val();

 saveNote(noteTitle, noteContent);

});

Cordova app - IndexedDB - data test 2

database - part 13 - add data handlers

//save note data to indexeddb

function saveNote(title, content){

 //define a note

 var note = {

 title:title,

 note:content

 }

 // create transaction

 var dbTransaction = db.transaction(["422os"],"readwrite");

 // define data object store

 var dataStore = dbTransaction.objectStore("422os");

 // add data to store

 var addRequest = dataStore.add(note,1);

 // success handler

 addRequest.onsuccess = function(e) {

 console.log("data stored...");

 // do something...

 }

 // error handler

 addRequest.onerror = function(e) {

 console.log(e.target.error.name);

 // handle error...

 }

}

Image - IndexedDB Support

DataTest2 - test IndexedDB - save data to store

Image - IndexedDB Support

DataTest2 - test IndexedDB - save data to store 2

Image - IndexedDB Support

DataTest2 - test IndexedDB - save data to store 3

Cordova app - IndexedDB - data test 2

database - part 14 - multiple notes

now created our IndexedDB

created the object store

setup the app's HTML and form

and saved some data to the database...

update our application to allow a user to add multiple notes to the

database

currently setting our key for a note in the saveNote() function

add another note, we get a constraint error output to the console

we're trying to add a note to an existing key in the database

need to update our logic for the app

to allow us to work more effectively with keys

Cordova app - IndexedDB - data test 2

database - part 15 - keys

keys in IndexedDB often considered similar to primary keys in SQL...

a unique reference for our data objects

traditional databases can include tables without such keys

NB: every object store in IndexedDB needs to have a key

able to use different types of keys for such stores

first option for a key is simply to create and add a key ourselves

could programatically create and update these keys

helps maintain unique ID for keys

could also provide a keypath for such keys

often based on a given property of the passed data...

still need to ensure our key is unique

other option is to use a key generator within our code

similar concept to SQL auto-increment

db.createObjectStore("422os", { autoIncrement: true });

Image - IndexedDB Support

DataTest2 - test IndexedDB - unique keys

Image - IndexedDB Support

DataTest2 - test IndexedDB - unique keys 2

References

Aaron, Marcus. Graphic Design for Electronic Documents and User Interfaces.

ACM Press. 1992.

Cordova API

plugin - camera

GitHub

cordova-plugin-indexeddb

MDN

IndexedDB

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-camera/index.html
https://www.npmjs.com/package/cordova-plugin-indexeddb
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

