
Comp 322/422 - Software Development for Wireless
and Mobile Devices

Fall Semester 2019 - Week 6

Dr Nick Hayward

Mobile Design & Development - Data Usage and
Persistency

Fun Exercise

Four apps, one per group

Book Exchange Map -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/books/

Chat Map - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/chat/

Cycle Map - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/cycle/

Physio Map - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/physio/

For your assigned app, consider the following

relevant use of mapping and geolocation within the app

does the map &c. help the app?

what is the value of geolocation in the app?

what type of data needs to stored in this app?

local options...

remote or cloud options...

~ 10 minutes

Cordova app - IndexedDB - Recap

Material covered so far:

general intro

checked IndexedDB availability as part of deviceready event

created reference for later use...

general usage

connection &c.

event listeners

success, error, upgradeneeded, blocked

create a new DB

check persistence

work with success and fail callbacks

object stores

add data

work with data handlers

multiple object stores, notes...

keys

...

Image - IndexedDB Support

DataTest2 - test IndexedDB - unique keys 2

Cordova app - IndexedDB - data test 2

database - part 16 - read data

now able to save our notes to the IndexedDB

need to read this data, and then load it into our application

use the same underlying pattern for read and write

use a transaction, and the request will be asynchronous

modify our transaction for readonly

// create transaction

var dbTransaction2 = db.transaction(["422os"],"readonly");

then use our new transaction get the required object store,

// define data object store

var dataStore2 = dbTransaction.objectStore("422os");

then request our value from the database,

// request value - key &c.

var object1 = dataStore2.get(key);

then use returned value for rendering...

Cordova app - IndexedDB - data test 2

database - part 17 - read data

update our HTML with a button to load and test our data from

IndexedDB,

add our event handler for the button

allows us to call the loadNoteData() function for querying the IndexedDB

// handler for load note button

$("#loadNote").on("tap", function(e) {

 e.preventDefault();

 // get requested data for specified key

 loadNoteData(1);

});

...

<input type="button" id="loadNote" data-icon="refresh" value="Load Note" data-inline="true

...

Cordova app - IndexedDB - data test 2

database - part 18 - read data

need to add our new function to load the data from the object store

function loadNoteData(key) {

 var dbTransaction = db.transaction(["422os"],"readonly");

 // define data object store

 var dataStore2 = dbTransaction.objectStore("422os");

 // request value - use defined key

 var object1 = dataStore2.get(key);

 // do something with return

 object1.onsuccess = function(e) {

 var result = e.target.result;

 //output to console for testing

 console.dir(result);

 console.log("found value...");

 }

}

use transaction to create connection to specified object store in

IndexedDB

able to request a defined value using a specified key

in this example key 1 for the object store 422os

process return value for use in application

Image - IndexedDB Support

DataTest2 - test IndexedDB - get data

Cordova app - IndexedDB - data test 2

database - part 19 - read more data

retrieving a single, specific value for a given key is obviously useful

may become limited in practical application usage

IndexedDB provides an option to retrieve multiple data values

uses an option called a cursor
helps us iterate through specified data within our IndexedDB

use these cursors to create iterators with optional filters

using range within a specified dataset

also add a required direction

creating and working with a cursor requires

a transaction

performs an asynchronous request

Cordova app - IndexedDB - data test 2

database - part 19 - read more data

create our transaction,

var dbTransaction = db.transaction(["422os"],"readonly");

retrieve our object store containing the required data

// define data object store

var dataStore3 = dbTransaction.objectStore("422os");

now create our cursor for use with the required object store,

var cursor = dataStore3.openCursor();

with this connection to the required object store in our specified

IndexedDB

now process the return values for our request

Cordova app - IndexedDB - data test 2

database - part 20 - read more data

use cursor to iterate through return results

work with specified object store within our standard success handler

cursor.onsuccess = function(e) {

 var result = e.target.result;

 if (result) {

 console.dir("notes", result.value);

 console.log("notes", result.key);

 result.continue();

 }

}

new success handler is working with a passed object for the result from

our IndexedDB

object, 402result, contains

required keys, data, and a method to iterate through the returned data

continue() method is the iterator for this cursor

allows us to iterate through our specified object store

Cordova app - IndexedDB - data test 2

database - part 21 - read more data

add an option to view all of the notes within our IndexedDB

using the following new function, loadNotes()

function loadNotes() {

 // create transaction

 var dbTransaction = db.transaction(["422os"],"readonly");

 // define data object store

 var dataStore3 = dbTransaction.objectStore("422os");

 var cursor = dataStore3.openCursor();

 // do something with return...

 cursor.onsuccess = function(e) {

 var result = e.target.result;

 if (result) {

 console.log("422 notes", result.value);

 console.log("422 notes", result.key);

 console.dir(result);

 result.continue();

 }

 }

}

Image - IndexedDB Support

DataTest2 - test IndexedDB - read more data

Cordova app - IndexedDB - data test 2

database - part 22 - index

a primary benefit of using IndexedDB

its support for indexes

retrieve data from these object stores using the data value itself

in addition to the standard key search

start by adding this option to our object stores

create an index by using our pattern for an upgrade event

creating the index at the same time as the object store

var dataStore = db.createObjectStore("422os", { autoIncrement:true});

// set name of index

dataStore.createIndex("note","note", {unique:false});

creating our object store, 422os
then using object store result to create and index using createIndex()

first argument for this method is the name for our index

second is the actual property we want indexing within the object store

add a set of options, eg: unique or not

IndexedDB will then create an index for this object store

Image - IndexedDB Support

DataTest2 - test IndexedDB - create index

Cordova app - IndexedDB - data test 2

database - part 22 - index

new index now created

start to add options for querying the database's values

need to specify a required index from the applicable object store

use a transaction to retrieve a given object store

then able to specify required index from that object store

// create transaction

var dbTransaction = db.transaction(["422os"],"readonly");

// define data object store

var dataStore = dbTransaction.objectStore("422os");

// define index

var dataIndex = dataStore.index("note");

we can then request some values using a standard get method with this

index

var note = "Capital of Madeira";

var getRequest = dataIndex.get(note);

Image - IndexedDB Support

DataTest2 - test IndexedDB - query index

Image - IndexedDB Support

DataTest2 - test IndexedDB - current index

Cordova app - IndexedDB - data test 2

database - part 23 - index

we will need to consider queries against an index in much broader terms

we need to consider the use and application of ranges relative to our

index

use of ranges returns a limited set of data from our object store

IndexedDB helps us create few different options for ranges

everything above..., everything below..., something between..., exact

set ranges either inclusive or exclusive

request ascending and descending ranges for our results

an example range might be limiting a query to a specific word, title, or

other key value...

// Only match "Madeira"

var singleRange = IDBKeyRange.only("Madeira");

by default, IndexedDB supports the following types of queries

IDBKeyRange.only() - Exact match

IDBKeyRange.upperBound() – objects = property below certain value

IDBKeyRange.lowerBound() – objects = property above certain value

IDBKeyRange.bound() – objects = property between certain values

Server-side considerations - data storage

SQL or NoSQL

common database usage and storage

often thought solely in terms of SQL, or structured query language

SQL used to query data in a relational format

relational databases, for example MySQL or PostgreSQL, store their data

in tables

provides a semblance of structure through rows and cells

easily cross-reference, or relate, rows across tables

a relational structure to map authors to books, players to teams...

thereby dramatically reducing redundancy, required storage space...

improvement in storage capacities, access...

led to shift in thinking, and database design in general

started to see introduction of non-relational databases

often referred to simply as NoSQL

with NoSQL DBs

redundant data may be stored

such designs often provide increased ease of use for developers

some NoSQL examples for specific use cases

eg: fast reading of data more efficient than writing

specialised DB designs

Server-side considerations - data storage

Redis - intro

Redis provides an excellent example of NoSQL based data storage

designed for fast access to frequently requested data

improvement in performance often due to a reduction in perceived

reliability

due to in-memory storage instead of writing to a disk

able to flush data to disk

performs this task at given points during uptime

for majority of cases considered an in-memory data store

stores this data in a key-value format

similar in nature to standard object properties in JavaScript

Redis often a natural extension of conventional data structures

Redis is a good option for quick access to data

optionally caching temporary data for frequent access

Server-side considerations - data storage

MongoDB - intro

MongoDB is another example of a NoSQL based data store

a database that enables us to store our data on disk

unlike MySQL, for example, it is not in a relational format

MongoDB is best characterised as a document-oriented database

conceptually may be considered as storing objects in collections

stores its data using the BSON format

consider similar to JSON

use JavaScript for working with MongoDB

Server-side considerations - data storage

MongoDB - document oriented

SQL database, data is stored in tables and rows

MongoDB, by contrast, uses collections and documents

comparison often made between a collection and a table

NB: a document is quite different from a table

a document can contain a lot more data than a table

a noted concern with this document approach is duplication of data

one of the trade-offs between NoSQL (MongoDB) and SQL

SQL - goal of data structuring is to normalise as much as possible

thereby avoiding duplicated information

NoSQL (MongoDB) - provision a data store, as easy as possible for the

application to use

Server-side considerations - data storage

MongoDB - BSON

BSON is the format used by MongoDB to store its data

effectively, JSON stored as binary with a few notable differences

eg: ObjectId values - data type used in MongoDB to uniquely identify documents

created automatically on each document in the database

often considered as analogous to a primary key in a SQL database

ObjectId is a large pseudo-random number

for nearly all practical occurrences, assume number will be unique

might cease to be unique if server can't keep pace with number

generation...

other interesting aspect of ObjectId
they are partially based on a timestamp

helps us determine when they were created

Server-side considerations - data storage

MongoDB - general hierarchy of data

in general, MongoDB has a three tiered data hierarchy

1. database

normally one database per app

possible to have multiple per server

same basic role as DB in SQL

2. collection

a grouping of similar pieces of data

documents in a collection

name is usually a noun

resembles in concept a table in SQL

documents do not require the same schema

3. document

a single item in the database

data structure of field and value pairs

similar to objects in JSON

eg: an individual user record

Server-side considerations - data storage

Firebase - mobile platform - what is it?

other data store and management options now available to us as

developers

depending upon app requirements consider

Firebase

RethinkDB

as a data store, Firebase offers a hosted NoSQL database

data store is JSON-based

offering quick, easy development from webview to data store

syncs an app's data across multiple connected devices in milliseconds

available for offline usage as well

provides an API for accessing these JSON data stores

real-time for all connected users

Firebase as a hosted option more than just data stores and real-time API

access

Firebase has grown a lot over the last year

many new features announced at Google I/O conference in May 2016

analytics, cloud-based messaging, app authentication

file storage, test options for Android

notifications, adverts...

Server-side considerations - data storage

working with mobile cross-platform designs

how can we use Redis, MongoDB, and other data store technologies with

Cordova?

considerations for a multi-platform structure

data

models

views

authentication

user login

accounts

data

Data considerations in mobile apps

worked our way through Cordova's File plugin

tested local read and write for files

test JS requests with JSON

local and remote files

remote services and APIs

work natively with JS objects

webview

controller

local or remote data store or service

Cross-platform JS - ES6 Generators & Promises -
intro

generators and promises are new to plain JavaScript

introduced with ES6 (ES2015)

Generators are a special type of function

produce multiple values per request

suspend execution between these requests

generators are useful to help simplify convoluted loops

suspend and resume code execution, &c.

helps write simple, elegant async code

Promises are a new, built-in object

help development of async code

promise becomes a placeholder for a value not currently available

but one that will be available later

Cross-platform JS - ES6 Generators & Promises -
async code and execution

JS relies on a single-threaded execution model

query a remote server using standard code execution

block the UI until a response is received and various operations completed

we may modify our code to use callbacks

invoked as a task completes

should help resolve blocking the UI

callbacks can quickly create a spaghetti mess of code, error handling, logic...

Generators and Promises

elegant solution to this mess and proliferation of code

Cross-platform JS - ES6 Generators & Promises -
promises - intro

a promise is similar to a placeholder for a value we currently do not have

but we would like later...

it's a guarantee of sorts

eventually receive a result to an asynchronous request, computation, &c.

a result will be returned

either a value or an error

we commonly use promises to fetch data from a server

fetch local and remote data

fetch data from APIs

Cross-platform JS - ES6 Generators & Promises -
promises - example

use the built-in Promise constructor to create a new promise object

then pass a function

a standard arrow function in the above example

// use built-in Promise constructor - pass callback function with two parameters (resolve &

const testPromise = new Promise((resolve, reject) => {

 resolve("test return");

 // reject("an error has occurred trying to resolve this promise...");

});

// use `then` method on promise - pass two callbacks for success and failure

testPromise.then(data => {

 // output value for promise success

 console.log("promise value = "+data);

}, err => {

 // output message for promise failure

 console.log("an error has been encountered...");

});

Cross-platform JS - ES6 Generators & Promises -
promises - executor

function for a Promise is commonly known as an executor function

includes two parameters, resolve and reject

executor function is called immediately

as the Promise object is being constructed

resolve argument is called manually

when we need the promise to resolve successfully

second argument, reject, will be called if an error occurs

uses the promise by calling the built-in then method

available on the promise object

then method accepts two callback functions

success and failure

success is called if the promise resolves successfully

the failure callback is available if there is an error

Cross-platform JS - ES6 Generators & Promises -
promises - example

explicit use of resolve

/*

* promise1.js

* wrap Array in Promise using resolve()...

*/

let testArray = Promise.resolve(['one', 'two', 'three']);

testArray.then(value => {

console.log(value[0]);

// remove first item from array

value.shift();

// pass value to chained `then`

return value;

})

.then(value => console.log(value[0]));

Demo - Promise.resolve

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-resolve/

Cross-platform JS - ES6 Generators & Promises -
promises - callbacks & async

async code is useful to prevent execution blocking

potential delays in the browser

e.g. as we execute long-running tasks

issue is often solved using callbacks

i.e. provide a callback that's invoked when the task is completed

such long running tasks may result in errors

issue with callbacks

e.g. we can't use built-in constructs such as try-catch statements

Cross-platform JS - ES6 Generators & Promises -
promises - callbacks & async - example

try {

 getJSON("data.json", function() {

 // handle return results...

 });

} catch (e) {

 // handle errors...

}

this won't work as expected due to the code executing the callback

not usually executed in the same step of the event loop

may not be in sync with the code running the long task

errors will usually get lost as part of this long running task

another issue with callbacks is nesting

a third issue is trying to run parallel callbacks

performing a number of parallel steps becomes inherently tricky and error

prone

Cross-platform JS - ES6 Generators & Promises -
promises - further details

a promise starts in a pending state

we know nothing about the return value

promise is often known as an unresolved promise

during execution

if the promise's resolve function is called

the promise will move into its fulfilled state

the return value is now available

if there is an error or reject method is explicitly called

the promise will simply move into a rejected state

return value is no longer available

an error now becomes available

either of these states

the promise can now no longer switch state

i.e from rejected to fulfilled and vice-versa...

Cross-platform JS - ES6 Generators & Promises -
promises - concept example

an example of working with a promise may be as

follows

code starts (execution is ready)

promise is now executed and starts to run

promise object is created

promise continues until it resolves

successful return, artificial timeout &c.

code for the current promise is now at an end

promise is now resolved

value is available in the promise

then work with resolved promise and value

call then method on promise and returned value...

this callback is scheduled for successful resolve of the promise

this callback will always be asynchronous regardless of state of promise...

Cross-platform JS - ES6 Generators & Promises -
promises - callbacks & async - example

promise from scratch

Demo - Promise from scratch

/*

* promisefromscratch-delay.js

* create a Promise object from scratch...use delay to check usage

* promise may only be called once per execution due to delay and timeout...

*/

// check promise usage relative to timer...either timeout will cause the Promise to call an

function resolveWithDelay(delay) {

 return new Promise(function(resolve, reject) {

 // log Promise creation...

 console.log('promise created...waiting');

 // resolve promise if delay value is less than 3000

 setTimeout(function() {

 resolve(`promise resolved in ${delay} ms`);

 }, delay);

 // resolve promise if delay is greater than 3000

 setTimeout(function() {

 resolve(`promise resolved in 3000ms`);

 }, 3000);

 })

}

// fulfilled with delay of 2000 ms

resolveWithDelay(2000).then(function(value) {

 console.log(value);

});

// fulfilled with default timeout of 3000 ms

// resolveWithDelay(6000).then(function(value) {

// console.log(value);

// });

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-scratch/

Cross-platform JS - ES6 Generators & Promises -
promises - explicitly reject

two standard ways to reject a promise

e.g. explicit rejection of promise

const promise = new Promise((resolve, reject) => {

 reject("explicit rejection of promise");

});

once the promise has been rejected

an error callback will always be invoked

e.g. through the calling of the then method

promise.then(

 () => fail("won't be called..."),

 error => pass("promise was explicitly rejected...");

);

also chain a catch method to the then method

as an alternative to the error callback. e.g.

promise.then(

 () => fail("won't be called..."))

 .catch(error => pass("promise was explicitly rejected..."));

Cross-platform JS - ES6 Generators & Promises -
promises - example

promise error handling

/*

* promise-basic-error1.js

* basic example usage of promise error handling and order...

*/

Promise

 .resolve(1)

 .then(x => {

 if (x === 2) {

 console.log('val resolved as', x);

 } else {

 throw new Error('test failed...')

 }

 })

 .catch(err => console.error(err));

Demo - Promise error handling with catch

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/basic-error/

Cross-platform JS - ES6 Generators & Promises -
promises - real-world promise - getJSON

// create a custom get json function

function getJSON(url) {

 // create and return a new promise

 return new Promise((resolve, reject) => {

 // create the required XMLHttpRequest object

 const request = new XMLHttpRequest();

 // initialise this new request - open

 request.open("GET", url);

 // register onload handler - called if server responds

 request.onload = function() {

 try {

 // make sure response is OK - server needs to return status 200 code...

 if (this.status === 200) {

 // try to parse json string - if success, resolve promise successfully with value

 resolve(JSON.parse(this.response));

 } else {

 // different status code, exception parsing JSON &c. - reject the promise...

 reject(this.status + " " + this.statusText);

 }

 } catch(e) {

 reject(e.message);

 }

 };

 // if error with server communication - reject the promise...

 request.onerror = function() {

 reject(this.status + " " + this.statusText);

 };

 // send the constructed request to get the JSON

 request.send();

 });

}

Cross-platform JS - ES6 Generators & Promises -
promises - real-world promise - usage

// call getJSON with required URL, then method for resolve object, and catch for error

getJSON("test.json").then(response => {

 // check return value from promise...

 response !== null ? "response obtained" : "no response";

}).catch((err) => {

 // Handle any error that occurred in any of the previous promises in the chain.

 console.log('error found = ', err); // not much to show due to return of jsonp from fli

});

Cross-platform JS - ES6 Generators & Promises -
promises - chain

calling then on the returned promise creates a new promise

if this promise is now resolved successfully

we can then register an additional callback

we may now chain as many then methods as necessary

create a sequence of promises

each resolved &c. one after another

instead of creating deeply nested callbacks

simply chain such methods to our initial resolved promise

to catch an error we may chain a final catch call

to catch an error for the overall chain

use the catch method for the overall chain

if a failure occurs in any of the previous promises

the catch method will be called

getJSON().then()

.then()

.then()

.catch((err) => {

 // Handle any error that occurred in any of the previous promises in the chain.

 console.log('error found = ', err); // not much to show due to return of jsonp from fli

});

Cross-platform JS - ES6 Generators & Promises -
promises - wait for multiple promises

promises also make it easy to wait for multiple, independent asynchronous

tasks

with Promise.all, we may wait for a number of promises

order of execution for tasks doesn't matter for Promise.all

by using the Promise.all method

we are simply stating that we want to wait...

Promise.all accepts an array of promises

then creates a new promise

promise will resolve successfully when all passed promises resolve

it will reject if a single one of the passed promises fails

return promise is an array of succeed values as responses

i.e. one succeed value for each passed in promise

// wait for a number of promises - all

Promise.all([

// call getJSON with required URL, `then` method for resolve object, and `catch` for error

getJSON("notes.json"),

getJSON("metadata.json")]).then(response => {

 // check return value from promise...response[0] = notes.json, response[1] = metadata.jso

 if (response[0] !== null) {

 console.log("response obtained");

 console.log("notes = ", JSON.stringify(response[0]));

 console.log("metadata = ", JSON.stringify(response[1]));

 }

}).catch((err) => {

 // Handle any error that occurred in any of the previous promises in the chain.

 console.log('error found = ', err); // not much to show due to return of jsonp from fli

});

Cross-platform JS - ES6 Generators & Promises -
promises - racing promises

we may also setup competing promises

with an effective prize to the first promise to resolve or reject

might be useful for querying multiple APIs, databases, &c.

method accepts an array of promises

returns a completely new resolved or rejected promise

returns for the first resolved or rejected promise

Promise.race(

 [

 // call getJSON with required URL, `then` method for resolve object, and `catch` for erro

 getJSON("notes.json"),

 getJSON("metadata.json")]).then(response => {

 if (response !== null) {

 console.log(`response obtained - ${response} won...`);

 }

 }).catch((err) => {

 // Handle any error that occurred in any of the previous promises in the chain.

 console.log('error found = ', err); // not much to show due to return of jsonp from fli

 });

);

Cross-platform JS - ES6 Generators & Promises -
promises - Fetch API

MDN - Fetch API

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Cross-platform JS - ES6 Generators & Promises -
promises - Fetch API - Example

basic usage

/*

* fetch-basic1.js

* basic example usage of Fetch API...

*/

fetch('./assets/notes.json')

 .then(response => {

 return response.json();

 })

 .then(myJSON => {

 console.log(myJSON);

 });

Demo - Fetch API - basic usage

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic.html

Cross-platform JS - ES6 Generators & Promises -
promises - Fetch API - Example

catching errors

/*

* fetch-basic-error1.js

* basic example usage of Fetch API...chain `catch` to `then` for error handling

*/

fetch('./assets/item.json')

 .then(response => {

 // reactions passed to `then` used to handle fulfillment of a promise

 return response.json();

 })

 .then(myJSON => {

 console.log(myJSON);

 })

 .catch(err => {

 // reactions passed to `catch` executed with a rejection reason...

 console.log(`error detected - ${err}`);

 });

Demo - Fetch API - catching errors

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/basic-error1.html

Cross-platform JS - ES6 Generators & Promises -
promises - Fetch API - Example

Fetch with Promise all

/*

* fetch-promise-all.js

* basic example usage of Promise.all...using Fetch API

*/

Promise

 .all([

 fetch('./assets/items.json'),

 fetch('./assets/notes.json')

])

 .then(responses =>

 Promise.all(responses.map(res => res.json()))

).then (json => {

 console.log(json);

 });

Demo - Fetch API - Promise all

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-all.html

Cross-platform JS - ES6 Generators & Promises -
promises - Fetch API - Example

Fetch with Promise race

/*

* fetch-promise-race.js

* basic example usage of Promise.race...using Fetch API

*/

Promise

 .race([

 fetch('./assets/items.json'),

 fetch('./assets/notes.json')

])

 .then(responses => {

 return responses.json()

 })

 .then(res => console.log(res));

Demo - Fetch API - Promise race

http://linode4.cs.luc.edu/teaching/cs/demos/422/promises/fetch/basic/promise-race.html

Cross-platform JS - ES6 Generators & Promises -
generators

a generator function generates a sequence of values

commonly not all at once but on a request basis

generator is explicitly asked for a new value

returns either a value or a response of no more values

after producing a requested value

a generator will then suspend instead of ending its execution

generator will then resume when a new value is requested

Cross-platform JS - ES6 Generators & Promises -
generators - example

//generator function

function* nameGenerator() {

 yield "emma";

 yield "daisy";

 yield "rosemary";

}

define a generator function by appending an asterisk after the keyword

function* ()

use the yield keyword within the body of the generator

to request and retrieve individual values

then consume these generated values using a standard loop

or perhaps the new for-of loop

Cross-platform JS - ES6 Generators & Promises -
generators - iterator object

if we make a call to the body of the generator

an iterator object will be created

we may now communicate with and control the generator using the

iterator object

//generator function

function* NameGenerator() {

 yield "emma";

}

// create an iterator object

const nameIterator = NameGenerator();

iterator object, nameIterator, exposes various methods including the

next method

Cross-platform JS - ES6 Generators & Promises -
generators - iterator object - next()

use next to control the iterator, and request its next value

// get a new value from the generator with the 'next' method

const name1 = nameIterator.next();

next method executes the generator's code to the next yield expression

it then returns an object with the value of the yield expression

and a property done set to false if a value is still available

done boolean will switch to true if no value for next requested yield

done is set to true

the iterator for the generator has now finished

Cross-platform JS - ES6 Generators & Promises -
generators - iterate over iterator object

iterate over the iterator object

return each value per available yield expression

e.g. use the for-of loop

// iterate over iterator object

for(let iteratorItem of NameGenerator()) {

 if (iteratorItem !== null) {

 console.log("iterator item = "+iteratorItem+index);

 }

}

Cross-platform JS - ES6 Generators & Promises -
generators - call generator within a generator

we may also call a generator from within another generator

//generator function

function* NameGenerator() {

 yield "emma";

 yield "rose";

 yield "celine";

 yield* UsernameGenerator();

 yield "yvaine";

}

function* UsernameGenerator() {

 yield "frisby67";

 yield "trilby72";

}

we may then use the initial generator, NameGenerator, as normal

References

Google Dev

Async functions

MDN

Async function

Await

Generator

Promises

https://developers.google.com/web/fundamentals/primers/async-functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

