Comp 322/422 - Software Development for
Wireless and Mobile Devices

Fall Semester 2019 - Week 8

Dr Nick Hayward

Design Patterns - Observer - intro

= observer pattern is used to help define a one to many dependency
between objects

= as subject (object) changes state
* any dependent observers (object/s) are then notified automatically
* and then may update accordingly

= managing changes in state to keep app in sync

= creating bindings that are event driven
* instead of standard push/pull

= standard usage for this pattern with bindings
* one to many
* one way

e commonly event driven

Image - Observer Pattern

subscribe

unsubscribe

Observer Pattern

Design Patterns - Observer - notifications

= observer pattern creates a model of event subscription with
notifications

= benefit of this pattern
* tends to promote loose coupling in component design and development

= pattern is used a lot in JavaScript based applications
* user events are a common example of this usage

= pattern may also be referenced as Pub/Sub
* there are differences between these patterns - be careful...

Design Patterns - Observer - Usage

The observer pattern includes two primary
objects,

= subject
* provides interface for observers to subscribe and unsubscribe
* sends notifications to observers for changes in state
* maintains record of subscribed observers
* e.g. aclick in the Ul

= observer
* includes a function to respond to subject notifications
e e.g. a handler for the click

Design Patterns - Observer - Example

// constructor for subject
function Subject () {
// keep track of observers

this.observers = [];

// add subscribe to constructor prototype
Subject.prototype.subscribe = function(fn) {
this.observers.push(£fn);

}i

// add unsubscribe to constructor prototype
Subject.prototype.unsubscribe = function(fn) {
/7 ...

// add broadcast to constructor prototype
Subject.prototype.broadcast = function(status) {
// each subscriber function called in response to state change...

this.observers.forEach((subscriber) => subscriber(status));

}i

// instantiate subject object

const domSubject = new Subject();

// subscribe & define function to call when broadcast message is sent
domSubject.subscribe ((status) => {
// check dom load
let domCheck = status === true ? “dom loaded = ${status} : “dom still loading.
// log dom check
console.log(domCheck)

)i

document.addEventListener ('DOMContentLoaded', () => domSubject.broadcast(true));

Design Patterns - Observer - Example

m Observer - Broadcast, Subscribe, & Unsubscribe

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/

Design Patterns - Pub/Sub - intro

= variation of standard observer pattern is publication and subscription
e commonly known as PubSub pattern

= popular usage in JavaScript
= PubSub pattern publishes a topic or event channel

= publication acts as a mediator or event system between
 subscriber objects wishing to receive notifications
* and publisher object announcing an event

= easy to define specific events with event system
= events may then pass custom arguments to a subscriber

= trying to avoid potential dependencies between objects
* subscriber objects and the publisher object

Design Patterns - Pub/Sub - abstraction

inherent to this pattern is the simple abstraction of responsibility

publishers are unaware of nature or type of subscribers for
messages

subscribers are unaware of the specifics for a given publisher

subscribers simply identify their interest in a given topic or event
* then receive notifications of updates for a given subscribed channel

= primary difference with observer pattern
e PubSub abstracts the role of the subscriber

m subscriber simply needs to handle data broadcasts by a publisher

= creating an abstracted event system between objects
e abstraction of concerns between publisher and subscriber

Image - Publish/Subscribe Pattern

publish topic/event

| topic/event |

channel

subscribe

PubSub Pattern

Design Patterns - Pub/Sub - benefits

= observer and PubSub patterns help developers
e Dbetter understanding of relationships within an app's logic and structure

= need to identify aspects of our app that contain direct relationships

= many direct relationships may be replaced with patterns
* subjects and observers
* publishers and observers

= tightly coupled code can quickly create issues
* maintenance, scale, modification, clarity of code and logic...

e semmingly minor changes may often create a cascade or waterfall effect in
code

= a known side effect of tightly couple code
* frequent need to mock usage &c. in testing
* time consuming and error prone as app scales...

= PubSub helps create smaller, loosely coupled blocks
* helps improve management of an app

® promotes code reuse

Design Patterns - Pub/Sub - basic example -
part | - event system

// constructor for pubsub object
function PubSub () {

this.pubsub = {};

}

// publish - expects topic/event & data to send
PubSub.prototype.publish = function (topic, data) {
// check topic exists
if (!this.pubsub[topic]){
console.log(publish - no topic...7);
return false;
}
// loop through pubsub for specified topic - call subscriber functions...
this.pubsub[topic].forEach(function(subscriber) {
subscriber (data || {});

)i

// subscribe - expects topic/event & function to call for publish notification
PubSub.prototype.subscribe = function (topic, fn) {
// check topic exists
if (!this.pubsub[topic]) {
// create topic
this.pubsub[topic] = [];
console.log(pubsub topic initialised...”);
}
else {
// log output for existing topic match
console.log(topic already initialised...’);
}
// push subscriber function to specified topic

this.pubsub[topic].push(£fn);

Design Patterns - Pub/Sub - basic example -
part 2 - usage

// basic log output
var logger = data => { console.log(“logged: ${data}”); };

// test function for subscriber
var domUpdater = function (data) {
document.getElementById('output').innerHTML = data;

// instantiate object for PubSub
const pubSub = new PubSub();

// subscriber tests

pubSub.subscribe('test_topic', logger);
pubSub.subscribe('test_topic2', domUpdater);
pubSub.subscribe('test_topic', logger);

// publisher tests
pubSub.publish('test_topic', 'hello subscribers of test topic...');
pubSub.publish('test_topic2', 'update notification for test topic2...');

= Demo - Pub/Sub

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

Mobile Desigh & Development - Patterns

Fun Exercise
FOUI" gl"OUPS, one app per gl"OUPI

= Fast Food -
http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/fastfood/

= |ngredients -
http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/ingredients/

= Street Food -
http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/street-food/

= Supermarkets -
http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/supermarkets/

For your assigned app, consider the following

= where may you use either the Observer or Pub/Sub pattern in the
app!

 consider from a developer's perspective

= which parts of either pattern, Observer or Pub/Sub, creates a
unified UX?

e consider UX in the app, and then compare with use of chosen pattern...

~ |10 minutes

React JavaScript Library

overview

= React began life as a port of a custom PHP framework called
XHP

* developed internally at Facebook

= XHP, as a PHP framework, was designed to render the full page for
each request

= React developed from this concept
e creating a client-side implementation of loading the full page

= React can, therefore, be perceived as a type of state machine
* control and manage inherent complexity of state as it changes over time

= able to achieve this by concentrating on a narrow scope for
development,
* maintaining and updating the DOM
* responding to events

= React is best perceived as a view library
* no definite requirements or restrictions on storage, data structure, routing...

= allows developers freedom
* incorporate React code into a broad scope of applications and frameworks

React Native

overview

= familiar to React developers

= React Native offers a native mobile experience
e using React |S patterns and structures

= developers can create native components for Android and iOS

= basics of React development are still required for React Native
development, e.g.

components

JSX

* props

* state

= create modular components with JavaScript
* without associated HTML and CSS

Image - React Native Timeline

public preview trending

[I
Summer 2013 | March 2015 | Summer 2017

. S £ S . S S e £ S S . . e . ¢
| January 2015 | September 2016
I I

Facebook internal hackathon open source

Timeline of React Native...

React Native

https://facebook.github.io/react-native/

React Native

native concept

= enables the transformation of JavaScript to required native
modules,
e j.e. for Android and iOS.

= as we compile a React Native app, we are now dealing with a
native app
e a performant, natively compiled app

= performance may become identical to those developed using the
native SDK
* je. Java or Kotlin for Android
* Objective-C and Swift for iOS

= another benefit of working with React Native
e jts ability to wrap many core APIs for iOS and Android

= React Native provides an APl as a simple bridge to its own
modules

= possible to integrate React Native into an existing native mobile
application

React JavaScript Library

why use React?

= React is often considered the V in the traditional MVC

= [React(http://facebook.github.io/react/docs/why-react.html) was
designed to solve one problem

building large applications with data that changes over time

m React can best be considered as addressing the core concerns
* simple, declarative, components

= simple - define how your app should look at any given point in time
* React handles all Ul changes and updates in response to data changes

= declarative - as data changes, React effectively refreshes your app
* sufficiently aware to only update those parts that have changed

= components - fundamental principle of React is building re-usable
components
* components are encapsulated in their design and concepts
e they make it simple for code re-use, testing...
* in particular, the separation of design and app concerns in general

= React leverages its built-in, powerful rendering system to produce
* quick, responsive rendering of DOM in response to received state changes

m yses a virtual DOM

* enables React to maintain and update the DOM without the lag of reading it as
well

React Native

why use React Native?

= React introduced many interesting and exciting options for
developing Uls

= React Native adopts many of these concepts to help ease the
development of mobile applications, e.g.
improved state management

uni-directions data flow

component based Ul design and construction

associated ease of inheritance and abstraction

= React Native = code in JavaScript, and then compile to full native
code

= JavaScript logic of app becomes native code for respective mobile
OS

= quick and easy developer tools
* e.g. live reloading of app during development
* hot loading of modules
* developer tools for interactions and mapping

React JavaScript Library

state changes

= as React is informed of a state change, it re-runs render functions

= enables it to determine a new representation of the page in its
virtual DOM

= then automatically translated into the necessary changes for the
new DOM

* reflected in the new rendering of the view

= may, at first glance, appear inherently slow
* React uses an efficient algorithm
e checks and determines differences
* differences between current page in the virtual DOM and the new virtual one

= from these differences it makes the minimal set of necessary
updates to the rendered DOM

= creates speed benefits and gains
* minimises usual reflows and DOM manipulations

= also minimises effect of cascading updates caused by frequent
DOM changes and updates

React JavaScript Library

component lifecycle

= in the lifecycle of a component

* its props or state might change along with any accompanying DOM
representation

= in effect, a component is a known state machine
e it will always return the same output for a given input

= following this logic, React provides components with certain
lifecycle hooks
* instantiation - mounting
e lifetime - updating
* teardown - unmounting

= we may consider these hooks
* first through the instantiation of the component
e then its active lifetime
* finally its teardown

React JavaScript Library

component lifecycle - intro

= React components include a minimal lifecycle API

= provides the developer with enough without being overwhelming
* at least in theory

= React provides what are known as will and did methods
e will - called right before something happens
e did - cadlled right after something happens

= relative to the lifecycle, we can consider the following groupings of
methods

Instantiation (mounting)

Lifetime (updating)

Teardown (unmounting)

Anti-pattern (calculated values)

React JavaScript Library

component lifecycle - method groupings - Instantiation (mounting)

= includes methods called upon instantiation for the selected
component class

= eg: getDefaultProps or getInitialState
e use such methods to set default values for new instances
e nitialise a custom state of each instance...

= also have the important render method
e builds our application's virtual DOM
e the only required method for a component

» render method has rules it needs to follow
e such as accessible data

e return values

= render method must also remain pure
e cannot change the state or modify the DOM output
* returned result is the virtual DOM
e compared against actual DOM
* helps determine if changes are required for the application

React JavaScript Library

component lifecycle - method groupings - Lifetime (updating)

= component has now been rendered to the user for viewing and
interaction

= as a user interacts with the component
e they are changing the state of that component or application
* allows us as developers to act on the relevant points in the component tree

= State changes for the application
* those dffecting the component
* may result in update methods being called

= we're telling the component how and when to update

React JavaScript Library

component lifecycle - method groupings - Teardown (unmounting)

= as React is finished with a component
* it must be unmounted from the DOM and destroyed

= there is a single hook for this moment
* provides opportunity to perform necessary cleanup and teardown

= componentWillUnmount
* removes component from component hierarchy
e this method cleans up the application before component removal

e undo custom work performed during component's instantiation

React JavaScript Library

component lifecycle - method groupings - Anti-pattern (calculated
values)

m React is particularly concerned with maintaining a single source of
truth
= one point where props and state are derived, set...

= consider calculated values derived from props
* considered an anti-pattern to store these calculated values as state

= if we needed to convert a props date to a string for rendering
* this is not state
e it should simply be calculated at the time of render

React JavaScript Library

a few benefits

= one of the main benefits of this virtual approach
* avoidance of micro-managing any updates to the DOM

= a developer simply informs React of any changes
* such as user input

= React is able to process those passed changes and updates

= React has inherent benefit of delegating all events to a single event
handler
 naturally gives React an associated performance boost

React Native

first app - basic-app

= basic app for React Native will follow a known, prescribed pattern

= use React Native CLI tool to generate a shell app for developing an
app

= in a development directory, e.g.
/Development/react-native/
e issue the following command to generate project files for an app

react-native init BasicApp

= command will call the React Native CLI
* then initialises a new project named BasicApp
* installed to a directory named BasicApp in CWD

= command also outputs useful instructions for running an app on
iOS and Android

React Native

how to start an app - iOS on OS X

= CWD to React Native app

= jssue the following command in the terminal, e.g.

react-native run-ios

= command will build the project
= |aunch the iOS simulator

= then show the app in a simulator window

React Native

how to start an app - Android on OS X

= assuming Android has been setup and configured correctly

= running an app with Android follows the same pattern as iOS, e.g.

react-native run-android

initial run will scan local machine for symlinks
= starts JS server for development and testing

= then it will need to download and config Gradle for local Android
setup

= jt starts to build and install the app in the CWD

React Native

basic app - intro

= now start to develop a basic app with React Native

= might add a basic screen, show a list of items from JSON, and
render some images

= consider how the fundamental structures and patterns work in
React Native

app - basic app directory structure

= basic structure is as follows,

| -- BasicApp

| __ __tests__
android
ios

node_modules

app.json
index.js
package-lock.json

package.json

= main directories and files created as we initialise a new project

= necessary files to build an app with React Native for iOS and
Android
* Jlocated in their respective directories, 10S and Android
e these are native project directories
* can be imported as native apps into Android Studio and Xcode

= n.b. not necessary to modify these files for majority of apps

= app.json file includes brief metadata for a generated app
* e.g. nhame, display name, and so on...

= package. json file is a standard file for Node development
* contains metadata for the React Native app...

React Native

app - getting started - part |

= clear the boilerplate code from the App. js file

= add a basic component for a home screen message, e.g.

// import React, Component module as Component from base React
import React, { Component } from 'react’;
// import Text as Text from React Native

import { Text } from 'react-native';

// default export - BasicApp - used when no explicit import reference...

export default class BasicApp extends Component {
render() {
return (

<Text>Greetings, Human!</Text>

)i

React Native

app - getting started - part 2

= use this new component within our app

= register it in the default index. js file, e.g.

// import AppRegistry as AppRegistry
import { AppRegistry } from 'react-native';
// import App from App.js (.js implied...)
import App from './App';

// register new component as Basic App - pass default from App.js
AppRegistry.registerComponent ('BasicApp', () => App);

Image - React Native - Basic App

first example

® iPhone 6 =i0S 10.3 (14E8301)
Greetings, Human! 7:23 PM -

e ———————————— R —— |

BasicApp_in iOS Simulator

React Native - Props

intro

= props in React and React Native are parameters
* we may pass them as a component is created...

= such props enable most components to be customised as they're
created

= use props to pass variables within a component &c.

= often use props to pass values and variables between
components

= in custom components usage of props helps abstract component
structure
* helps reuse within an app...

React Native - Props

props usage - part |

// import React, Component module as Component from base React
import React, { Component } from 'react’;

// import Text as Text &c. from React Native

import { AppRegistry, Text, View } from 'react-native';

// custom abstracted component - expects props for text “output’
class OutputText extends Component {
render () {
return (
// render passed props “output” value

<Text>{ this.props.output }</Text>

// default component - use View container render OutputText message with passed p
export default class WelcomeMessage extends Component {

render () {

return (
// View container - render Text output from OutputText component

<View style={{alignItems: 'center'}}>
// JSX embed OutputText component - pass value for props ~output”
<OutputText output='welcome to the basic tester...' />

</View>

React Native - Props

props usage - part 2

= we define the required imports for React and React Native
* including existing components we need for this basic app

= AppRegistry - entry point for JavaScript to enable a React
Native app to run...
e added as part of init command for React Native apps

= Text - used to display text within an app

= View - a Ul container for displaying content
* basic requirement for Ul development with React Native
e supports layout structures with flexbox, style, touch, accessibility...

= then define our required custom components
e one abstracted for broader re-use
* the other for use in the current specific app

= OQutputText is the abstracted component
* accepts props as part of the output for a standard Text component

= as render () function is called for this component
* it returns text output with the value of the passed props

= WelcomeMessage is a custom component
* also set as the default export for the module

= if the export is not explicitly set
* WelcomeMessage component will be called at execution
* this component returns a standard View container
* with its own defined style props

References

= Cordova
e OnsenUl - JavaScript Reference
* Whitelist plugin

= React Native
* React
e React Native
e React Deviools

https://onsen.io/v2/docs/js.html
https://github.com/apache/cordova-plugin-whitelist
https://reactjs.org/
https://facebook.github.io/react-native/
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools

