
Comp 322/422 - Software Development for
Wireless and Mobile Devices

Fall Semester 2019 - Week 8

Dr Nick Hayward

Design Patterns - Observer - intro

observer pattern is used to help define a one to many dependency

between objects

as subject (object) changes state

any dependent observers (object/s) are then notified automatically

and then may update accordingly

managing changes in state to keep app in sync

creating bindings that are event driven

instead of standard push/pull

standard usage for this pattern with bindings

one to many

one way

commonly event driven

Image - Observer Pattern

Observer Pattern

Design Patterns - Observer - notifications

observer pattern creates a model of event subscription with

notifications

benefit of this pattern

tends to promote loose coupling in component design and development

pattern is used a lot in JavaScript based applications

user events are a common example of this usage

pattern may also be referenced as Pub/Sub

there are differences between these patterns - be careful...

Design Patterns - Observer - Usage

The observer pattern includes two primary

objects,

subject

provides interface for observers to subscribe and unsubscribe

sends notifications to observers for changes in state

maintains record of subscribed observers

e.g. a click in the UI

observer

includes a function to respond to subject notifications

e.g. a handler for the click

Design Patterns - Observer - Example

// constructor for subject

function Subject () {

 // keep track of observers

 this.observers = [];

}

// add subscribe to constructor prototype

Subject.prototype.subscribe = function(fn) {

 this.observers.push(fn);

};

// add unsubscribe to constructor prototype

Subject.prototype.unsubscribe = function(fn) {

 // ...

};

// add broadcast to constructor prototype

Subject.prototype.broadcast = function(status) {

 // each subscriber function called in response to state change...

 this.observers.forEach((subscriber) => subscriber(status));

};

// instantiate subject object

const domSubject = new Subject();

// subscribe & define function to call when broadcast message is sent

domSubject.subscribe((status) => {

 // check dom load

 let domCheck = status === true ? `dom loaded = ${status}` : `dom still loading.

 // log dom check

 console.log(domCheck)

});

document.addEventListener('DOMContentLoaded', () => domSubject.broadcast(true));

Design Patterns - Observer - Example

Observer - Broadcast, Subscribe, & Unsubscribe

http://linode4.cs.luc.edu/teaching/cs/demos/422/observer/basic1/

Design Patterns - Pub/Sub - intro

variation of standard observer pattern is publication and subscription

commonly known as PubSub pattern

popular usage in JavaScript

PubSub pattern publishes a topic or event channel

publication acts as a mediator or event system between

subscriber objects wishing to receive notifications

and publisher object announcing an event

easy to define specific events with event system

events may then pass custom arguments to a subscriber

trying to avoid potential dependencies between objects

subscriber objects and the publisher object

Design Patterns - Pub/Sub - abstraction

inherent to this pattern is the simple abstraction of responsibility

publishers are unaware of nature or type of subscribers for

messages

subscribers are unaware of the specifics for a given publisher

subscribers simply identify their interest in a given topic or event

then receive notifications of updates for a given subscribed channel

primary difference with observer pattern

PubSub abstracts the role of the subscriber

subscriber simply needs to handle data broadcasts by a publisher

creating an abstracted event system between objects

abstraction of concerns between publisher and subscriber

Image - Publish/Subscribe Pattern

PubSub Pattern

Design Patterns - Pub/Sub - benefits

observer and PubSub patterns help developers

better understanding of relationships within an app's logic and structure

need to identify aspects of our app that contain direct relationships

many direct relationships may be replaced with patterns

subjects and observers

publishers and observers

tightly coupled code can quickly create issues

maintenance, scale, modification, clarity of code and logic...

semmingly minor changes may often create a cascade or waterfall effect in
code

a known side effect of tightly couple code

frequent need to mock usage &c. in testing

time consuming and error prone as app scales...

PubSub helps create smaller, loosely coupled blocks

helps improve management of an app

promotes code reuse

Design Patterns - Pub/Sub - basic example -
part 1 - event system

// constructor for pubsub object

function PubSub () {

this.pubsub = {};

}

// publish - expects topic/event & data to send

PubSub.prototype.publish = function (topic, data) {

 // check topic exists

 if (!this.pubsub[topic]){

 console.log(`publish - no topic...`);

 return false;

 }

 // loop through pubsub for specified topic - call subscriber functions...

 this.pubsub[topic].forEach(function(subscriber) {

 subscriber(data || {});

 });

};

// subscribe - expects topic/event & function to call for publish notification

PubSub.prototype.subscribe = function (topic, fn) {

 // check topic exists

 if (!this.pubsub[topic]) {

 // create topic

 this.pubsub[topic] = [];

 console.log(`pubsub topic initialised...`);

 }

 else {

 // log output for existing topic match

 console.log(`topic already initialised...`);

 }

 // push subscriber function to specified topic

 this.pubsub[topic].push(fn);

};

Design Patterns - Pub/Sub - basic example -
part 2 - usage

// basic log output

var logger = data => { console.log(`logged: ${data}`); };

// test function for subscriber

var domUpdater = function (data) {

 document.getElementById('output').innerHTML = data;

}

// instantiate object for PubSub

const pubSub = new PubSub();

// subscriber tests

pubSub.subscribe('test_topic', logger);

pubSub.subscribe('test_topic2', domUpdater);

pubSub.subscribe('test_topic', logger);

// publisher tests

pubSub.publish('test_topic', 'hello subscribers of test topic...');

pubSub.publish('test_topic2', 'update notification for test topic2...');

Demo - Pub/Sub

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

Mobile Design & Development - Patterns

Fun Exercise

Four groups, one app per group:

Fast Food -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/fastfood/

Ingredients -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/ingredients/

Street Food -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/street-food/

Supermarkets -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/supermarkets/

For your assigned app, consider the following

where may you use either the Observer or Pub/Sub pattern in the

app?

consider from a developer's perspective

which parts of either pattern, Observer or Pub/Sub, creates a

unified UX?

consider UX in the app, and then compare with use of chosen pattern...

~ 10 minutes

React JavaScript Library

overview

React began life as a port of a custom PHP framework called

XHP

developed internally at Facebook

XHP, as a PHP framework, was designed to render the full page for

each request

React developed from this concept

creating a client-side implementation of loading the full page

React can, therefore, be perceived as a type of state machine

control and manage inherent complexity of state as it changes over time

able to achieve this by concentrating on a narrow scope for

development,

maintaining and updating the DOM

responding to events

React is best perceived as a view library

no definite requirements or restrictions on storage, data structure, routing...

allows developers freedom

incorporate React code into a broad scope of applications and frameworks

React Native

overview

familiar to React developers

React Native offers a native mobile experience

using React JS patterns and structures

developers can create native components for Android and iOS

basics of React development are still required for React Native

development, e.g.

components

JSX

props

state

...

create modular components with JavaScript

without associated HTML and CSS

Image - React Native Timeline

Timeline of React Native...

React Native

https://facebook.github.io/react-native/

React Native

native concept

enables the transformation of JavaScript to required native

modules,

i.e. for Android and iOS.

as we compile a React Native app, we are now dealing with a

native app

a performant, natively compiled app

performance may become identical to those developed using the

native SDK

i.e. Java or Kotlin for Android

Objective-C and Swift for iOS

another benefit of working with React Native

its ability to wrap many core APIs for iOS and Android

React Native provides an API as a simple bridge to its own

modules

possible to integrate React Native into an existing native mobile

application

React JavaScript Library

why use React?

React is often considered the V in the traditional MVC

[React(http://facebook.github.io/react/docs/why-react.html) was

designed to solve one problem

building large applications with data that changes over time

React can best be considered as addressing the core concerns

simple, declarative, components

simple - define how your app should look at any given point in time

React handles all UI changes and updates in response to data changes

declarative - as data changes, React effectively refreshes your app

sufficiently aware to only update those parts that have changed

components - fundamental principle of React is building re-usable

components

components are encapsulated in their design and concepts

they make it simple for code re-use, testing...

in particular, the separation of design and app concerns in general

React leverages its built-in, powerful rendering system to produce

quick, responsive rendering of DOM in response to received state changes

uses a virtual DOM

enables React to maintain and update the DOM without the lag of reading it as
well

React Native

why use React Native?

React introduced many interesting and exciting options for

developing UIs

React Native adopts many of these concepts to help ease the

development of mobile applications, e.g.

improved state management

uni-directions data flow

component based UI design and construction

associated ease of inheritance and abstraction

...

React Native = code in JavaScript, and then compile to full native

code

JavaScript logic of app becomes native code for respective mobile

OS

quick and easy developer tools

e.g. live reloading of app during development

hot loading of modules

developer tools for interactions and mapping

...

React JavaScript Library

state changes

as React is informed of a state change, it re-runs render functions

enables it to determine a new representation of the page in its

virtual DOM

then automatically translated into the necessary changes for the

new DOM

reflected in the new rendering of the view

may, at first glance, appear inherently slow

React uses an efficient algorithm

checks and determines differences

differences between current page in the virtual DOM and the new virtual one

from these differences it makes the minimal set of necessary

updates to the rendered DOM

creates speed benefits and gains

minimises usual reflows and DOM manipulations

also minimises effect of cascading updates caused by frequent

DOM changes and updates

React JavaScript Library

component lifecycle

in the lifecycle of a component

its props or state might change along with any accompanying DOM
representation

in effect, a component is a known state machine

it will always return the same output for a given input

following this logic, React provides components with certain

lifecycle hooks

instantiation - mounting

lifetime - updating

teardown - unmounting

we may consider these hooks

first through the instantiation of the component

then its active lifetime

finally its teardown

React JavaScript Library

component lifecycle - intro

React components include a minimal lifecycle API

provides the developer with enough without being overwhelming

at least in theory

React provides what are known as will and did methods

will - called right before something happens

did - called right after something happens

relative to the lifecycle, we can consider the following groupings of

methods

Instantiation (mounting)

Lifetime (updating)

Teardown (unmounting)

Anti-pattern (calculated values)

React JavaScript Library

component lifecycle - method groupings - Instantiation (mounting)

includes methods called upon instantiation for the selected

component class

eg: getDefaultProps or getInitialState
use such methods to set default values for new instances

initialise a custom state of each instance...

also have the important render method

builds our application's virtual DOM

the only required method for a component

render method has rules it needs to follow

such as accessible data

return values

render method must also remain pure

cannot change the state or modify the DOM output

returned result is the virtual DOM

compared against actual DOM

helps determine if changes are required for the application

React JavaScript Library

component lifecycle - method groupings - Lifetime (updating)

component has now been rendered to the user for viewing and

interaction

as a user interacts with the component

they are changing the state of that component or application

allows us as developers to act on the relevant points in the component tree

State changes for the application

those affecting the component

may result in update methods being called

we're telling the component how and when to update

React JavaScript Library

component lifecycle - method groupings - Teardown (unmounting)

as React is finished with a component

it must be unmounted from the DOM and destroyed

there is a single hook for this moment

provides opportunity to perform necessary cleanup and teardown

componentWillUnmount
removes component from component hierarchy

this method cleans up the application before component removal

undo custom work performed during component's instantiation

React JavaScript Library

component lifecycle - method groupings - Anti-pattern (calculated
values)

React is particularly concerned with maintaining a single source of

truth

one point where props and state are derived, set...

consider calculated values derived from props
considered an anti-pattern to store these calculated values as state

if we needed to convert a props date to a string for rendering

this is not state

it should simply be calculated at the time of render

React JavaScript Library

a few benefits

one of the main benefits of this virtual approach

avoidance of micro-managing any updates to the DOM

a developer simply informs React of any changes

such as user input

React is able to process those passed changes and updates

React has inherent benefit of delegating all events to a single event

handler

naturally gives React an associated performance boost

React Native

first app - basic-app

basic app for React Native will follow a known, prescribed pattern

use React Native CLI tool to generate a shell app for developing an

app

in a development directory, e.g.

/Development/react-native/
issue the following command to generate project files for an app

react-native init BasicApp

command will call the React Native CLI

then initialises a new project named BasicApp
installed to a directory named BasicApp in CWD

command also outputs useful instructions for running an app on

iOS and Android

React Native

how to start an app - iOS on OS X

CWD to React Native app

issue the following command in the terminal, e.g.

react-native run-ios

command will build the project

launch the iOS simulator

then show the app in a simulator window

React Native

how to start an app - Android on OS X

assuming Android has been setup and configured correctly

running an app with Android follows the same pattern as iOS, e.g.

react-native run-android

initial run will scan local machine for symlinks

starts JS server for development and testing

then it will need to download and config Gradle for local Android

setup

it starts to build and install the app in the CWD

React Native

basic app - intro

now start to develop a basic app with React Native

might add a basic screen, show a list of items from JSON, and

render some images

consider how the fundamental structures and patterns work in

React Native

app - basic app directory structure

basic structure is as follows,

|-- BasicApp

 |__ __tests__

 |__ android

 |__ ios

 |__ node_modules

 |__ App.js

 |__ app.json

 |__ index.js

 |__ package-lock.json

 |__ package.json

 |__ ...

main directories and files created as we initialise a new project

necessary files to build an app with React Native for iOS and

Android

located in their respective directories, iOS and Android
these are native project directories

can be imported as native apps into Android Studio and Xcode

n.b. not necessary to modify these files for majority of apps

app.json file includes brief metadata for a generated app

e.g. name, display name, and so on...

package.json file is a standard file for Node development

contains metadata for the React Native app...

React Native

app - getting started - part 1

clear the boilerplate code from the App.js file

add a basic component for a home screen message, e.g.

// import React, Component module as Component from base React

import React, { Component } from 'react';

// import Text as Text from React Native

import { Text } from 'react-native';

// default export - BasicApp - used when no explicit import reference...

export default class BasicApp extends Component {

 render() {

 return (

 <Text>Greetings, Human!</Text>

);

 }

}

React Native

app - getting started - part 2

use this new component within our app

register it in the default index.js file, e.g.

// import AppRegistry as AppRegistry

import { AppRegistry } from 'react-native';

// import App from App.js (.js implied...)

import App from './App';

// register new component as Basic App - pass default from App.js

AppRegistry.registerComponent('BasicApp', () => App);

Image - React Native - Basic App

first example

BasicApp in iOS Simulator

React Native - Props

intro

props in React and React Native are parameters

we may pass them as a component is created...

such props enable most components to be customised as they're

created

use props to pass variables within a component &c.

often use props to pass values and variables between

components

in custom components usage of props helps abstract component

structure

helps reuse within an app...

React Native - Props

props usage - part 1

// import React, Component module as Component from base React

import React, { Component } from 'react';

// import Text as Text &c. from React Native

import { AppRegistry, Text, View } from 'react-native';

// custom abstracted component - expects props for text `output`

class OutputText extends Component {

 render() {

 return (

 // render passed props `output` value

 <Text>{ this.props.output }</Text>

);

 }

}

// default component - use View container render OutputText message with passed p

export default class WelcomeMessage extends Component {

 render() {

 return (

 // View container - render Text output from OutputText component

 <View style={{alignItems: 'center'}}>

 // JSX embed OutputText component - pass value for props `output`

 <OutputText output='welcome to the basic tester...' />

 </View>

);

 }

}

React Native - Props

props usage - part 2

we define the required imports for React and React Native

including existing components we need for this basic app

AppRegistry - entry point for JavaScript to enable a React

Native app to run...

added as part of init command for React Native apps

Text - used to display text within an app

View - a UI container for displaying content

basic requirement for UI development with React Native

supports layout structures with flexbox, style, touch, accessibility...

then define our required custom components

one abstracted for broader re-use

the other for use in the current specific app

OutputText is the abstracted component

accepts props as part of the output for a standard Text component

as render() function is called for this component

it returns text output with the value of the passed props

WelcomeMessage is a custom component

also set as the default export for the module

if the export is not explicitly set

WelcomeMessage component will be called at execution

this component returns a standard View container

with its own defined style props

References

Cordova

OnsenUI - JavaScript Reference

Whitelist plugin

React Native

React

React Native

React DevTools

https://onsen.io/v2/docs/js.html
https://github.com/apache/cordova-plugin-whitelist
https://reactjs.org/
https://facebook.github.io/react-native/
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools

