Comp 322/422 - Software Development for Wireless and
Mobile Devices

Fall Semester 2019 - Week 9

Dr Nick Hayward

DEV week assessment

Course total = 25%

= begin development of a mobile application from scratch
e NOT a responsive website viewed on a mobile device

e must apply technologies taught up to and including DEV week, e.g.
o Apache Cordova, React Native, &c.
o combine technologies taught to fit your mobile app...

= can be platform agnostic (cross-platform) or specific targeted OS, e.g.
e cross-platform app that builds for Android and iOS
e targeted build for Android or iOS
e consider choice, and explain why?

= outline concept, research conducted to date

= consider applicable design patterns

= are you using any sensors etc!

e how, why?

= prototyping
e demo current prototypes

e any working tests or models etc

= anything else to help explain your mobile app...

DEV Week Demo

DEV week assessment will include the following:

= brief presentation or demonstration of current project work
e ~ |0 minutes per group

e analysis of work conducted so far
o e.g. during semester & DEV week

e presentation and demonstration...
o outline mobile app
o show prototypes and designs

o explain what does & does not work
O e

React Native - Layout and Styles

flex and CSS inspired

= Ul structure in React Native is achieved using Flexbox
e originally defined for web development

= currently used to help with Ul layout patterns and designs

= Flexbox usage slightly different for React Native
e no CSS syntax for styles

= React Native styles are written, manipulated, and contained in JavaScript

= benefits of component structure to store and abstract our Ul layouts and styles

React Native - Layout and Styles - add some flex

intro

Flexbox works the same way in React Native as it does in CSS on the web, with
a few exceptions. The defaults are different, with flexDirection defaulting to
column instead of row, and the flex parameter only supporting a single number.

= React Native uses the flexbox algorithm

e specify layout and design for its components, and their children

= benefit of flexbox layouts

e adaptation to multiple screen sizes, aspect ratios, and orientations...

» for React Native, there tends to be three predominant uses
e alignItems

e flexDirection

e justifyContent

React Native - Layout and Styles - add some flex

flexDirection

= by defining a component's flexDirection
e setting organisational pattern for its subsequent children

e might be set to a horizontal row or a vertical column

= by default, flexDirection will be set to a column
e change to row

const styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: 'row',
b
})i

» a View with the style for container
e will use all of the available screen space
e and render its child components in a row pattern

e cascading from row to row...

React Native - Layout and Styles - add some flex

justifyContent

= then update this style to define how child components start to fill each row
e setting their justifyContent value

= options include
e flex-start
e flex-end
e space-around

e space-between

const styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: 'row',
justifyContent: 'flex-end'
e
})i

React Native - Layout and Styles - add some flex

alignItems

= align items offers a simple, complementary option to flexDirection

= if the direction for the primary axis, set using £1lexDirection, is column

e alignItems will define the secondary axis as row

= options include
e flex-start
e flex-end
e center

e stretch

= caveat to using the stretch value
e need to ensure no fixed dimensions set for any children of flex component

const styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: 'column',
justifyContent: 'flex-start',
alignItems: 'stretch’',
}
)i

more layout options

» further options may be specified as props
e add to a given component or stylesheet...

= full details can be found at the following URL,
e Layout Props

https://facebook.github.io/react-native/docs/layout-props.html

React Native - Layout and Styles - add some flex

basic flex usage - part |

export default class BasicFlexApp extends Component {
render() {
return (
<View style={styles.container}>
<View style={styles.col}>
<Text>
Welcome to Flex layouts!
</Text>
<Text>
a few basic tests...
</Text>
</View>
<View style={styles.col}>
<Text>
{instructions}
</Text>
</View>
</View>
)i

const styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: 'row',
justifyContent: 'space-around’,
alignItems: 'center',
backgroundColor: 'darkseagreen’,
}
col: {
flexDirection: 'column',
backgroundColor: 'paleturquoise’,
Y
})i

Image - React Native - Flex Basics

elcome to Flex layouts! . o
05 eanie oyoue.

React Native Flex Basics

Image - React Native - Flex Basics - List View

(o Ut @ 3:28

List View Tester

add some lists...

example list - FlatList

names...

Amelia
Beatrice
Daisy
Elizabeth
Emma
Evelyn
Georgiana
Jane
Rose

Victoria

React Native List View

Image - React Native - Flex Basics - Scroll View
O 6 " @ 3:37

Scroll View Tester

fun with scrolling

a test intro for scroll views...try scrolling
down the screen

Lorem Ipsum Generator

React Native Scroll View

Image - React Native - Styles

text input

(o U @ 3:43

Basic Text Input

knter a favourite quotation...

Android tester...

the unexamined life is not worth living...

React Native Styles - Text Input

Image - React Native - Styles

text input with keyboard

O @ i @ 3:43

Basic Text Input

enter a favourite quotation...

Android tester...

the unexamined life is not worth living...

> I'm I we Y
q‘] WE eE r4 tE yﬁ u? iB O'!I pU
a s df gh j k |

4 z x¢cvbnhm €A

7123 , © 0

React Native Styles - Text Input

React Native - Layout and Styles

basic styling

= similar to CSS usage with standard client-side apps
e styles are defined and set for colour, size, background colour...

= property names for these styles specified using a camelCase pattern. e.g.

fontWeight
fontSize

backgroundColor

= styles may be set using a plain JavaScript variable
e acts as a container for multiple styles

= using StyleSheet.create()
e we can pass an object defining multiple custom style properties
e properties include namelvalue pairs

e the value is set as an object with the defined styles, e.g.

const styles = StyleSheet.create({
headermain: {
fontWeight: 'bold’,
fontSize: 25,
color: 'green',
b
})i

React Native - Layout and Styles

style usage

= to add a style to a component
e set value of the style prop to a standard JavaScript object, e.g.

<Text style={styles.headermain}>Main Header</Text>

= in this example,
e simply using the property from the styles object
e this will add the required style values for the defined prop

React Native - Layout and Styles

Platform specific styles

import { Platform, StyleSheet } from 'react-native';

const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center’',
alignItems: 'center',
backgroundColor: '#F5FCFF',
Y
welcome: {
...Platform.select ({
ios: {
fontFamily: 'Arial’,
color: 'cadetblue',
I
android: {
fontFamily: 'Roboto’,
color: 'green',
I
)

textAlign: 'center’,
margin: 10,
fontSize: 20,
Y
)i

React Native - Layout and Styles

Style inheritance - part |

= React Native documentation suggests a preferred pattern for setting parent styles
e styles may then be inherited for children

= pattern uses nested components with a custom parent defined with abstracted
styles

= child component may then inherit such styles
e or override with specific component-level styles

class MyAppText extends Component {
render() {
return (
<Text>
{this.props.children}
</Text>

)i

= e.g. a parent component is created for an app's rendering of basic text

this will simply return any child text as a default Text component

= we may also create custom styles to add to this new component

textdefault: {
fontSize: 15,
color: '#000'

React Native - Layout and Styles

Style inheritance - part 2

= usage may then be as follows,

<MyAppText style={styles.textdefault}>

some app text...

<Text style={styles.welcome}>Welcome to Styles!</Text>
</MyAppText>

= the child text in the MyAppText component
e nitially styled with the textdefault styles

= we may then override or supplement these styles
o e.g. with specific styles on a given child component

welcome: {
...Platform.select ({
ios: {
fontFamily: 'Arial’,
color: 'blue',
Y
android: {
fontFamily: 'Roboto’,
color: 'green',
Y

)
fontSize: 25,

textAlign: 'auto’,
backgroundColor: '#ddd’,

Image - React Native - Styles

basic styles

React Native Styles - Inherit

Image - React Native - Styles

basic buttons

OoOs U @ 3:39

TAP FOR ALERT

React Native Styles - Buttons

Image - React Native - Styles

basic touchable

O @ % B34

Try a Touchable Highlight

React Native Styles - Touchable

Image - React Native - Styles

basic touchable with alert

test touchable tap fired...

React Native Styles - Touchable

React Native - State

intro

= React and React Native manage data using either props or state
» props are set by the parent, and remain immutable for a component's lifetime
= if we need to modify data whilst an app is running, we can use state

= React has a distinct pattern to state usage
e state should be initialised in the constructor for a component &c.

e setState may then be used to modify and update state

React Native - State

general usage

» use state to manage data within an app
e from basic Ul updates to data from a remote DB or API

= as the data is updated
e we can modify state within our app

» state may be managed within a React Native app
e or by using containers such as Redux, MobX...

= Redux and MobX are predominantly used with React based apps
e standalone libraries for state management

» by introducing a container such as Redux
e circumvent direct management of state with setState

e state updates rely upon Redux management.

React Native - State

state usage - example

= basic example of state usage and maintenance
e may set a static message using props

e then update a notification using state

// import React, Component module as Component from base React
import React, { Component } from 'react’;
// import Text as Text &c. from React Native

import { AppRegistry, Text, View } from 'react-native';

// abstracted component for rendering *tape* text
class Tape extends Component {
// instantiate object - expects props parameter, e.g. text & value
constructor (props) {
// calls parent class' constructor with “props” provided - i.e. uses Component to setup props
super (props) ;
// set initial state - e.g. text is shown
this.state = { showText: true };

// set timer for tape output
setInterval(() => {
// update state - pass “updater” and use callback (optional for setState)
// “updater” prevState is used to set state based on previous state
this.setState(prevState => {
// setState callback - guaranteed to fire after update applied
return { showText: !prevState.showText };
i
}, 1500);

// call render function on object
render() {
// set display boolean - showText if true, else output blank...
let display = this.state.showText ? this.props.text : ' ';
return (
// output text component with text from props or blank...
<Text>{display}</Text>

)i

React Native - State

state usage - example outline - part |

» define the required imports for React and React Native
e including existing components we need for this basic app

e import AppRegistry, Text, View components

= define our required custom components
e one abstracted for broader re-use

e another for use in the current specific app

» Tape class is an abstracted component
o used for rendering passed text with a timer
e constructor instantiates an object with passed props

e e.g passed text for rendering

= in the Tape class constructor
e super is used to call parent class' constructor with props provided

e i.e. uses Component to setup props

= then set the initial state on the instantiated object
e default to true for this component

React Native - State

state usage - example outline - part 2

= call the JS function setInterval() to create a basic timer
e creates the simple Ul animation - delay is set to 1500 milliseconds

= main focus of this function is to modify state
e this may trigger an update

= call setState on the current object
e function is called with a passed updater and a callback

= prevState is available for the setState function
e used to set state based on previous known state

» state itself may not necessarily be triggered immediately
e React may delay an update until it has a worthwhile queue

= we can call an immediate callback as this setState is registered

= we simply change the boolean value for showText
o e.g false to true, true to false

= then call the render () function on the current object
e outputting text passed using props

= simply check the boolean value in state
e then render a text component with props text or a blank space

Image - React Native - State

basic usage

State Off

State On

-

welcome to the test state app!

React Native - Debugging an app

Chrome DevTools

= debugging mobile may become problematic, time consuming...

= React Native's JavaScript event loop
e may be connected to Chrome's DevTools

e DevTools is a quick and useful debugging option

= use key combinations to show dev menu in simulator
e Windows 10 = Ctrl+D
e OS X =Cmd+D

= various options for testing &c.

Image - React Native - Chrome DevTools

iOS simulator options

o) O iPhone & - i0S 10.3 (14E8301)

React Native: Development (RCTCxxBridge System
JSC)

Reload

Debug JS Remotely

Enable Live Reload

Start Systrace

Enable Hot Reloading

Toggle Inspector

Show Perf Monitor

react Native Options in iOS Simulator

Image - React Native - Chrome DevTools

developer tools

C v @ localhost:8081/debugger-uif w © O » O
Dark Theme = Maintain Priority
React Native JS code runs as a web worker inside this tab.

Press to open Developer Tools. Enable Pause On Caught Exceptions
for a better debugging experience.

You may also install the standalone version of React Developer Tools to
inspect the React component hierarchy, their props, and state.

Status: Debugger session #10002 active.

[w ﬂ Elements Console Metwork Performance Sources Application » X
® | top ¥ | | Filter Default levels ¥ =
Console was cleared index):174
Running application BasicAppComponents ({ RCTLog. is:48

initialProps = {
L E
rogtTag = 1;
1
Running application BasicAppComponents ({ index.bundletplatfor.bminify=false:14776
initialProps = {
rogtTag = 1;
|
Running application “BasicAppComponents" with appParams: infolog.is:17
{"rootTag":1,"initialProps":{}}. __DEV__ === true, development-level warning are ON,
performance optimizations are OFF
Running application “BasicAppComponents" with index.bundle?platfor.iminify=false:14927
appParams: {"rootTag":1,"initialProps":{}}. _ DEV__ === true, development-level warning are

OM, performance optimizations are OFF

React Native Debugging in Chrome DevTools

Image - React Native - Debug Options

inspector

® iPhone 6 — 105 10.3 (14E8301)
Carrier = 8:26 PM |_ 1

(Bpp)" Text * RCTText

1

center (18. D,
center

T 309.5)
#F5FCFF
= 010 o395

renderApplication.js:35 48.0
(0]

0

Inspect. Perf Network Touchables

React Native Inspector

React JavaScript Library

a React approach to development - part |

» unidirectional data flow
e a key concept that React introduced for Ul development

= the Ul of an application is now a function of the state of the application

= instead of the need to update the Ul directly we can now modify state
e unlike tradition Ul development

= e.g.in JavaScript we add an eventListener to an element
e check for user interaction &c.
e update the Ul directly

= with React we record the event in the Ul
e then update the state of the component

= React with then propagate this change to the Ul

= it's the change in state that causes components to be updated

React JavaScript Library

a React approach to development - part 2

= components play a crucial role in React development
» dividing the logic and structure of our Ul into reusable components
= inherently easier to test and reuse a given component across an application

= DRY, or Don"t Repeat Yourself

e becomes key for how we conceive and use components

= React components also inherently create a declarative pattern and structure
o helps with development of these apps

» useful feedback for the layout and development of an app
e tree-like data structure of component usage

= code inherently becomes easier to read...

React JavaScript Library

data flow

v
component

browser DOM

React Data Flow

Image - React Native - Structure

structural considerations

1 - Event 8 - Update UL

I
I |
v I
2 - Data collected 7 - Process commands
Notification sent ~
I |
I I

Native: Android or i0S modules

v I
3 - Serialised data &c. 6 — Serialised response
| Batched

| ~

Bridge: React Native Bridge

—— | — | —
[I
v |
4 - Event processing > 5 — Call native methods
App logic or call update UI

REVERT 14

React Native Structure

React Native - Native APIs and Threading

structural considerations

= a separate Native modules thread
e used to access and process Native APl requests...

= e.g. access a device's camera, photos, geolocation, gestures...

= JavaScript layer also has a runtime thread
e aJavaScript event loop

» complex calculations can become expensive in the JavaScript layer

= many, consistent Ul updates will also become expensive and drag on perfomance

React JavaScript Library

getting started - part |

= many different options for using React

= create a hew app using React
e e.g. Create React App - GitHub

= add React to an existing app
e e.g. using NPM to install React and dependencies

npm init

npm install --save react react-dom

= import React into a project using the standard Node import options, e.g.

import React from 'react’;

import ReactDOM from 'react-dom';

https://github.com/facebookincubator/create-react-app

React JavaScript Library

getting started - part 2

» for earlier versions of React and JSX
e pre-compile |SX into JavaScript before deploying our application

o used React's |SXTransformer option to compile and monitor |SX for dev projects

» as React has evolved over the last year
e still use this underlying concept
o Babel in-browser |SX transformer for explicit ESé support (if required...)

= Babel will add a check to our app to allow us to use JSX syntax
¢ React code then understood by the browser

= dynamic transformation works well for most test scenarios
e preferable to pre-compile for production apps

e should help to make an app faster for production usage

React JavaScript Library

JSX - intro

» JSX stands for JavaScript XML
¢ follows an XML familiar syntax for developing markup within React components

= JSX is not compulsory within React
e might be omitted due to compile requirements for an app

= JSX may be useful for an app
e it makes components easier to read and understand

e jts structure is more succinct and less verbose

» A few defining characteristics of JSX
e each JSX node maps to a function in JavaScript
e |SX does not require a runtime library

e JSX does not supplement or modify the underlying semantics of JavaScript

React Native

JSX intro and usage

» Facebook considers JSX as a XML-like extension to ECMAScript
e without any defined semantics
e NOT intended to be implemented by engines or browsers
e not a proposal to incorporate |SX into the ECMAScript spec itself
e used to transform syntax into standard ECMAScript

= for React Native
e these JavaScript objects are passed to the React Native Bridge
e then translated into native components.

= e.g. astandard <Text> component in JSX may be written as follows

<Text style={styles.description}>
A test React Native app...
</Text>

= JSX will then be transpiled by the React Native bridge into the following JavaScript

React.createElement (
Text,
{ style: styles.welcome },
"A test React Native app..."
)i

React Native

JSX hierarchies

= benefit of JSX with React Native is its use with hierarchies

e such as a standard <View> and nested <Text> component structure

<View style={styles.container}>
<Text style={styles.description}>
A test React Native app...
</Text>

</View>
= transpiled into the following JavaScript

React.createElement (
View,
null,
React.createElement (
Text,
{ style: styles.welcome },
"A test React Native app..."
)
)i

React Native

JSX children

= a primary feature of |SX with React Native
e option to pass children to a React component

e enables effective component composition

= seen regularly with hierarchy composition
e e.g hierarchy of <View> and <Text>

<View style={styles.container}>
<Text style={styles.description}>
A test React Native app...
</Text>

</View>
= we may create a simple Component and encapsulate thiS structure

class Container extends Component {
render() {
return (

<View style={styles.container}>{ this.props.children }</View>

» then reuse this component as necessary

<Container>
<Text style={styles.description}>
A test React Native app...
</Text>

</Container>

React Native

JSX props and children

= seen example usage of props with styles, data, and now children

= as we pass a standard prop, such as style
e passing a property to the defined React component

= property is accessible inside this component using the standard syntax
this.props.propName

= as we define a component
e children is default prop React passes to this component for the hierarchy

e becomes the component reference for any children in this hierarchy

this.props.children

React JavaScript Library

JSX - benefits

= why use |SX, in particular when it simply maps to JavaScript functions?

= many of the inherent benefits of |SX become more apparent
e as an application, and its code base, grows and becomes more complex

= benefits can include
e a sense of familiarity - easier with experience of XML and DOM manipulation

eg: React components capture all possible representations of the DOM

e JSX transforms an application's JavaScript code into semantic, meaningful markup
e permits declaration of component structure and information flow using a similar syntax to HTML
e permits use of pre-defined HTML5 tag names and custom components

e easy to visualise code and components

e considered easier to understand and debug

e ease of abstraction due to |SX transpiler

e abstracts process of converting markup to JavaScript

e unity of concerns

e no need for separation of view and templates

e React encourages discrete component for each concern within an application

e encapsulates the logic and markup in one definition

React JavaScript Library

JSX - composite components

= example React component might allow us to output a custom heading

class OutputHeading extends Component {
render() {
return (
// render passed props “output” value, pass heading size...

<Text style={this.props.style}>{this.props.output}</Text>
)i

currently return a standard Text component

= now update this example to work with dynamic values

JSX considers values dynamic if they are placed between curly brackets {. .}

e treated as JavaScript context

<OutputHeading output='Component Heading Tester' style={styles.heading3} />

React JavaScript Library

JSX - conditionals

= a component's markup and its logic are inherently linked in React
= this naturally includes conditionals, loops...

» adding if statements directly to JSX will create invalid JavaScript

l. ternary operator
this.state.isComplete ? 'is-complete'

2. variable

getIsComplete: function() {

return this.state.isComplete ? 'is-complete’
Y
render () {

var isComplete = this.getIsComplete();

return (

<Test complete={isComplete}>...</Test>
)i

3. function call

getIsComplete: function() {
return this.state.isComplete ? 'is-complete’
Y
render () {
return (
<Test complete={this.getIsComplete()}>...</Test>
)i
}

» to handle React's lack of output for null or false values
e use a boolean value and follow it with the desired output

React JavaScript Library

JSX - special considerations for attributes - part |

= in JSX, there are special considerations for attribute
o key
e ref
l. key
= an optional unique identifier that remains consistent throughout render passes

» informs React so it can more efficiently select when to reuse or destroy a
component

= helps improve the rendering performance of the application.

= eg: if two elements already in the DOM/View need to switch position
e React is able to match the keys and move them

e does not require unnecessary re-rendering of the complete DOM/View

React JavaScript Library

JSX - special considerations for attributes - part 2

2. ref

» ref permits parent components to easily maintain a reference to child components
e available outside of the render function

= to use ref, simply set the attribute to the desired reference name

render () {
return (
<TextInput ref='myInput' ... />
)i
}
= able to access this ref using the defined this.refs.myInput

e access anywhere in the component

e object accessed through this ref known as a backing instance

= NB: not the actual DOM/View

e a description of the component React uses to create the view when necessary

React JavaScript Library

data flow

= data flows in one direction in React

e namely from parent to child
= helps to make components nice and simple, and predictable as well
= components take props from the parent, and then render

= if a prop has been changed, for whatever reason
e React will update the component tree for that change

e then re-render any components that used that property

= |nternal state also exists for each component
e state should only be updated within the component itself

= we can think of data flow in React
e interms of props and state

Image - React Native - Data Flow

basic data flow with FlatList

Carrier & 5:08 PM LI

Classical Authors

example data flow with FlatList...

React Native - Basic Data Flow

React Native - Data Flow

basic data flow with FlatList - example

// custom abstracted component - expects props for list data...
class ListClassics extends Component {
render () {
return (
<FlatList
data={this.props.data}
renderItem={({item}) => <Text style={styles.listItem}>{item.key}</Text>}
/>
)i

// default component - use View container, render list &c. with passed props...
export default class DataFlow extends Component {
render() {
let classics = [{ key: 'Greek'}, {key: 'Roman'}];
return (
<View style={styles.container}>
<View style={styles.headingBox}>
<Text style={styles.headingl}>
{intro.heading}
</Text>
<Text style={styles.content}>
{intro.description}
</Text>
</View>
<View style={styles.listBox}>
<ListClassics data={classics} />
</View>
</View>

)i

React JavaScript Library

data flow - props - part |

= props can hold any data and are passed to a component for usage

= set props on a component during instantiation

let classics = [{ key: 'Greek'}, {key: 'Roman'}];

<ListClassics classics={classics}/>
= also use the setProps method on a given instance of a component

var ListClassics = React.createClass({
render: function() {
return (
<1li className="classic">{this.props.classics}</1i>
)i
}
i

var classics = [{ key: 'Greek'}];
var listClassics = React.render (
<ListClassics/>,
document.getElementById('example')
)i

listClassics.setProps({ classics: classics });

React Native

data flow - setNativeProps

= React Native has a similar option called setNativeProps
= React.js may directly manipulate a DOM node
= |ikewise, we may need to directly modify or maniupulate a mobile app

= React Native documentation recommend such usage as follows,

Use setNativeProps when frequent re-rendering creates a performance
bottleneck

= not recommended for frequent use

= we may need to use it for
e regular animation updates
e form management

e graphics...

= use with care

React Native

data flow - setNativeProps example
= define function for clearTextInput

clearTextInput = () => {
this._textInput.setNativeProps({text: ''});

}

» call clearTextInput () function on touch press

<Button
onPress={this.clearTextInput}
title="'Tap to clear text'
color="#585459"
/>

= add Textlnput component and define reference

<TextInput
//arrow function call to set value to current component...
ref={component => this._ textInput = component}
style={styles.textInput}
placeholder={this.state.quoteInput}
onChangeText={ (quoteText) => this.setState({quoteText})}
selectionColor="#585459"

/>

Image - React Native - Data Flow

setNativeProps example - default

Carrier 6:16 PM -

Set Native Props

directly modify...

Tap to clear text

the unexamined life is not worth living...

React Native - setNativeProps - default

Image - React Native - Data Flow

setNativeProps example - add quote

Carrier 6:16 PM -

Set Native Props

directly modify...

Genius is 1% inspiration,

Tap to clear text

Genius is 1% inspiration,

React Native - setNativeProps - add quote

Image - React Native - Data Flow

setNativeProps example - clear text input

Carrier 6:17 PM -

Set Native Props

directly modify...

Tap to clear text

Genius is 1% inspiration,

React Native - setNativeProps - clear text input

Extra notes - Cordova, JS, React Native...

lots of extra notes on course website and GitHub Notes
repository,

= https://github.com/csteach422/notes/
including,

= Cordova

= CSS

» Data store - incl. MongoDB and updates with Firebase
= design

= HTML & HTML5

= |S - incl. intro, core, logic, async...

= |S patterns

= React Native

= various - incl. Git & Heroku, Heroku & MongoDB

plus more notes will be added on Cordova, React Native,
data stores, APl usage...

...& see source code examples in the course's source
repository on GitHub,

= https://github.com/csteach422/source/

References

= Cordova API docs
e config.xml
e Globalization
e Hooks
o Merges

e Network Information

= React Native
e MDN - super
e React JS - Component Lifecycle
e React /S - componentDidUpdate
e React JS - shouldComponentUpdate
e React Native - Layout Props

https://cordova.apache.org/docs/en/latest/config_ref/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/guide/appdev/hooks/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-cli/index.html#merges
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-network-information/index.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/react-component.html#componentdidupdate
https://reactjs.org/docs/react-component.html#shouldcomponentupdate
https://facebook.github.io/react-native/docs/layout-props.html

