
Comp 322/422 - Software Development for Wireless and
Mobile Devices

Fall Semester 2019 - Week 9

Dr Nick Hayward

DEV week assessment

Course total = 25%

begin development of a mobile application from scratch

NOT a responsive website viewed on a mobile device

must apply technologies taught up to and including DEV week, e.g.
Apache Cordova, React Native, &c.
combine technologies taught to fit your mobile app...

can be platform agnostic (cross-platform) or specific targeted OS, e.g.

cross-platform app that builds for Android and iOS

targeted build for Android or iOS

consider choice, and explain why?

outline concept, research conducted to date

consider applicable design patterns

are you using any sensors etc?

how, why?

prototyping

demo current prototypes

any working tests or models etc

anything else to help explain your mobile app...

DEV Week Demo

DEV week assessment will include the following:

brief presentation or demonstration of current project work

~ 10 minutes per group

analysis of work conducted so far
e.g. during semester & DEV week

presentation and demonstration...
outline mobile app
show prototypes and designs
explain what does & does not work
...

React Native - Layout and Styles

flex and CSS inspired

UI structure in React Native is achieved using Flexbox

originally defined for web development

currently used to help with UI layout patterns and designs

Flexbox usage slightly different for React Native

no CSS syntax for styles

React Native styles are written, manipulated, and contained in JavaScript

benefits of component structure to store and abstract our UI layouts and styles

React Native - Layout and Styles - add some flex

intro

Flexbox works the same way in React Native as it does in CSS on the web, with

a few exceptions. The defaults are different, with flexDirection defaulting to

column instead of row, and the flex parameter only supporting a single number.

React Native uses the flexbox algorithm

specify layout and design for its components, and their children

benefit of flexbox layouts

adaptation to multiple screen sizes, aspect ratios, and orientations...

for React Native, there tends to be three predominant uses

alignItems

flexDirection

justifyContent

React Native - Layout and Styles - add some flex

flexDirection

by defining a component's flexDirection
setting organisational pattern for its subsequent children

might be set to a horizontal row or a vertical column

by default, flexDirection will be set to a column

change to row

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'row',

 },

});

a View with the style for container
will use all of the available screen space

and render its child components in a row pattern

cascading from row to row...

React Native - Layout and Styles - add some flex

justifyContent

then update this style to define how child components start to fill each row

setting their justifyContent value

options include

flex-start

flex-end

space-around

space-between

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'row',

 justifyContent: 'flex-end'

 },

});

React Native - Layout and Styles - add some flex

alignItems

align items offers a simple, complementary option to flexDirection

if the direction for the primary axis, set using flexDirection, is column

alignItems will define the secondary axis as row

options include

flex-start

flex-end

center

stretch

caveat to using the stretch value

need to ensure no fixed dimensions set for any children of flex component

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column',

 justifyContent: 'flex-start',

 alignItems: 'stretch',

 },

});

more layout options

further options may be specified as props

add to a given component or stylesheet...

full details can be found at the following URL,

Layout Props

https://facebook.github.io/react-native/docs/layout-props.html

React Native - Layout and Styles - add some flex

basic flex usage - part 1

...

export default class BasicFlexApp extends Component {

 render() {

 return (

 <View style={styles.container}>

 <View style={styles.col}>

 <Text>

 Welcome to Flex layouts!

 </Text>

 <Text>

 a few basic tests...

 </Text>

 </View>

 <View style={styles.col}>

 <Text>

 {instructions}

 </Text>

 </View>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'row',

 justifyContent: 'space-around',

 alignItems: 'center',

 backgroundColor: 'darkseagreen',

 },

 col: {

 flexDirection: 'column',

 backgroundColor: 'paleturquoise',

 },

});

Image - React Native - Flex Basics

React Native Flex Basics

Image - React Native - Flex Basics - List View

React Native List View

Image - React Native - Flex Basics - Scroll View

React Native Scroll View

Image - React Native - Styles

text input

React Native Styles - Text Input

Image - React Native - Styles

text input with keyboard

React Native Styles - Text Input

React Native - Layout and Styles

basic styling

similar to CSS usage with standard client-side apps

styles are defined and set for colour, size, background colour...

property names for these styles specified using a camelCase pattern. e.g.

fontWeight

fontSize

backgroundColor

styles may be set using a plain JavaScript variable

acts as a container for multiple styles

using StyleSheet.create()
we can pass an object defining multiple custom style properties

properties include name/value pairs

the value is set as an object with the defined styles, e.g.

const styles = StyleSheet.create({

 headermain: {

 fontWeight: 'bold',

 fontSize: 25,

 color: 'green',

 },

});

React Native - Layout and Styles

style usage

to add a style to a component

set value of the style prop to a standard JavaScript object, e.g.

<Text style={styles.headermain}>Main Header</Text>

in this example,

simply using the property from the styles object

this will add the required style values for the defined prop

React Native - Layout and Styles

Platform specific styles

import { Platform, StyleSheet } from 'react-native';

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 },

 welcome: {

 ...Platform.select({

 ios: {

 fontFamily: 'Arial',

 color: 'cadetblue',

 },

 android: {

 fontFamily: 'Roboto',

 color: 'green',

 },

 }),

 textAlign: 'center',

 margin: 10,

 fontSize: 20,

 },

});

React Native - Layout and Styles

Style inheritance - part 1

React Native documentation suggests a preferred pattern for setting parent styles

styles may then be inherited for children

pattern uses nested components with a custom parent defined with abstracted
styles

child component may then inherit such styles

or override with specific component-level styles

class MyAppText extends Component {

 render() {

 return (

 <Text>

 {this.props.children}

 </Text>

);

 }

}

e.g. a parent component is created for an app's rendering of basic text

this will simply return any child text as a default Text component

we may also create custom styles to add to this new component

textdefault: {

 fontSize: 15,

 color: '#000'

}

React Native - Layout and Styles

Style inheritance - part 2

usage may then be as follows,

<MyAppText style={styles.textdefault}>

 some app text...

 <Text style={styles.welcome}>Welcome to Styles!</Text>

</MyAppText>

the child text in the MyAppText component

initially styled with the textdefault styles

we may then override or supplement these styles

e.g. with specific styles on a given child component

welcome: {

 ...Platform.select({

 ios: {

 fontFamily: 'Arial',

 color: 'blue',

 },

 android: {

 fontFamily: 'Roboto',

 color: 'green',

 },

 }),

 fontSize: 25,

 textAlign: 'auto',

 backgroundColor: '#ddd',

}

Image - React Native - Styles

basic styles

React Native Styles - Inherit

Image - React Native - Styles

basic buttons

React Native Styles - Buttons

Image - React Native - Styles

basic touchable

React Native Styles - Touchable

Image - React Native - Styles

basic touchable with alert

React Native Styles - Touchable

React Native - State

intro

React and React Native manage data using either props or state

props are set by the parent, and remain immutable for a component's lifetime

if we need to modify data whilst an app is running, we can use state

React has a distinct pattern to state usage

state should be initialised in the constructor for a component &c.

setState may then be used to modify and update state

React Native - State

general usage

use state to manage data within an app

from basic UI updates to data from a remote DB or API

as the data is updated

we can modify state within our app

state may be managed within a React Native app

or by using containers such as Redux, MobX...

Redux and MobX are predominantly used with React based apps

standalone libraries for state management

by introducing a container such as Redux

circumvent direct management of state with setState

state updates rely upon Redux management.

React Native - State

state usage - example

basic example of state usage and maintenance

may set a static message using props

then update a notification using state

// import React, Component module as Component from base React

import React, { Component } from 'react';

// import Text as Text &c. from React Native

import { AppRegistry, Text, View } from 'react-native';

// abstracted component for rendering *tape* text

class Tape extends Component {

 // instantiate object - expects props parameter, e.g. text & value

 constructor(props) {

 // calls parent class' constructor with `props` provided - i.e. uses Component to setup props

 super(props);

 // set initial state - e.g. text is shown

 this.state = { showText: true };

 // set timer for tape output

 setInterval(() => {

 // update state - pass `updater` and use callback (optional for setState)

 // `updater` prevState is used to set state based on previous state

 this.setState(prevState => {

 // setState callback - guaranteed to fire after update applied

 return { showText: !prevState.showText };

 });

 }, 1500);

 }

 // call render function on object

 render() {

 // set display boolean - showText if true, else output blank...

 let display = this.state.showText ? this.props.text : ' ';

 return (

 // output text component with text from props or blank...

 <Text>{display}</Text>

);

 }

}

React Native - State

state usage - example outline - part 1

define the required imports for React and React Native

including existing components we need for this basic app

import AppRegistry, Text, View components

define our required custom components

one abstracted for broader re-use

another for use in the current specific app

Tape class is an abstracted component

used for rendering passed text with a timer

constructor instantiates an object with passed props

e.g. passed text for rendering

in the Tape class constructor

super is used to call parent class' constructor with props provided

i.e. uses Component to setup props

then set the initial state on the instantiated object

default to true for this component

React Native - State

state usage - example outline - part 2

call the JS function setInterval() to create a basic timer

creates the simple UI animation - delay is set to 1500 milliseconds

main focus of this function is to modify state
this may trigger an update

call setState on the current object

function is called with a passed updater and a callback

prevState is available for the setState function

used to set state based on previous known state

state itself may not necessarily be triggered immediately

React may delay an update until it has a worthwhile queue

we can call an immediate callback as this setState is registered

we simply change the boolean value for showText
e.g. false to true, true to false

then call the render() function on the current object

outputting text passed using props

simply check the boolean value in state
then render a text component with props text or a blank space

Image - React Native - State

basic usage

State Off State On

React Native - Debugging an app

Chrome DevTools

debugging mobile may become problematic, time consuming...

React Native's JavaScript event loop

may be connected to Chrome's DevTools

DevTools is a quick and useful debugging option

use key combinations to show dev menu in simulator

Windows 10 = Ctrl+D

OS X = Cmd+D

various options for testing &c.

Image - React Native - Chrome DevTools

iOS simulator options

react Native Options in iOS Simulator

Image - React Native - Chrome DevTools

developer tools

React Native Debugging in Chrome DevTools

Image - React Native - Debug Options

inspector

React Native Inspector

React JavaScript Library

a React approach to development - part 1

unidirectional data flow

a key concept that React introduced for UI development

the UI of an application is now a function of the state of the application

instead of the need to update the UI directly we can now modify state

unlike tradition UI development

e.g. in JavaScript we add an eventListener to an element

check for user interaction &c.

update the UI directly

with React we record the event in the UI

then update the state of the component

React with then propagate this change to the UI

it's the change in state that causes components to be updated

React JavaScript Library

a React approach to development - part 2

components play a crucial role in React development

dividing the logic and structure of our UI into reusable components

inherently easier to test and reuse a given component across an application

DRY, or Don't Repeat Yourself

becomes key for how we conceive and use components

React components also inherently create a declarative pattern and structure

helps with development of these apps

useful feedback for the layout and development of an app

tree-like data structure of component usage

code inherently becomes easier to read...

React JavaScript Library

data flow

React Data Flow

Image - React Native - Structure

structural considerations

React Native Structure

React Native - Native APIs and Threading

structural considerations

a separate Native modules thread

used to access and process Native API requests...

e.g. access a device's camera, photos, geolocation, gestures...

JavaScript layer also has a runtime thread

a JavaScript event loop

complex calculations can become expensive in the JavaScript layer

many, consistent UI updates will also become expensive and drag on perfomance

React JavaScript Library

getting started - part 1

many different options for using React

create a new app using React

e.g. Create React App - GitHub

add React to an existing app

e.g. using NPM to install React and dependencies

npm init

npm install --save react react-dom

import React into a project using the standard Node import options, e.g.

import React from 'react';

import ReactDOM from 'react-dom';

https://github.com/facebookincubator/create-react-app

React JavaScript Library

getting started - part 2

for earlier versions of React and JSX

pre-compile JSX into JavaScript before deploying our application

used React's JSXTransformer option to compile and monitor JSX for dev projects

as React has evolved over the last year

still use this underlying concept

Babel in-browser JSX transformer for explicit ES6 support (if required...)

Babel will add a check to our app to allow us to use JSX syntax

React code then understood by the browser

dynamic transformation works well for most test scenarios

preferable to pre-compile for production apps

should help to make an app faster for production usage

React JavaScript Library

JSX - intro

JSX stands for JavaScript XML

follows an XML familiar syntax for developing markup within React components

JSX is not compulsory within React

might be omitted due to compile requirements for an app

JSX may be useful for an app

it makes components easier to read and understand

its structure is more succinct and less verbose

A few defining characteristics of JSX

each JSX node maps to a function in JavaScript

JSX does not require a runtime library

JSX does not supplement or modify the underlying semantics of JavaScript

React Native

JSX intro and usage

Facebook considers JSX as a XML-like extension to ECMAScript

without any defined semantics

NOT intended to be implemented by engines or browsers

not a proposal to incorporate JSX into the ECMAScript spec itself

used to transform syntax into standard ECMAScript

for React Native

these JavaScript objects are passed to the React Native Bridge

then translated into native components.

e.g. a standard <Text> component in JSX may be written as follows

<Text style={styles.description}>

 A test React Native app...

</Text>

JSX will then be transpiled by the React Native bridge into the following JavaScript

React.createElement(

 Text,

 { style: styles.welcome },

 "A test React Native app..."

);

React Native

JSX hierarchies

benefit of JSX with React Native is its use with hierarchies

such as a standard <View> and nested <Text> component structure

<View style={styles.container}>

 <Text style={styles.description}>

 A test React Native app...

 </Text>

</View>

transpiled into the following JavaScript

React.createElement(

 View,

 null,

 React.createElement(

 Text,

 { style: styles.welcome },

 "A test React Native app..."

)

);

React Native

JSX children

a primary feature of JSX with React Native

option to pass children to a React component

enables effective component composition

seen regularly with hierarchy composition

e.g. hierarchy of <View> and <Text>

<View style={styles.container}>

 <Text style={styles.description}>

 A test React Native app...

 </Text>

</View>

we may create a simple component and encapsulate this structure

class Container extends Component {

 render() {

 return (

 <View style={styles.container}>{ this.props.children }</View>

)

 }

}

then reuse this component as necessary

<Container>

 <Text style={styles.description}>

 A test React Native app...

 </Text>

</Container>

React Native

JSX props and children

seen example usage of props with styles, data, and now children

as we pass a standard prop, such as style
passing a property to the defined React component

property is accessible inside this component using the standard syntax

this.props.propName

as we define a component

children is default prop React passes to this component for the hierarchy

becomes the component reference for any children in this hierarchy

this.props.children

React JavaScript Library

JSX - benefits

why use JSX, in particular when it simply maps to JavaScript functions?

many of the inherent benefits of JSX become more apparent

as an application, and its code base, grows and becomes more complex

benefits can include

a sense of familiarity - easier with experience of XML and DOM manipulation

eg: React components capture all possible representations of the DOM

JSX transforms an application's JavaScript code into semantic, meaningful markup

permits declaration of component structure and information flow using a similar syntax to HTML

permits use of pre-defined HTML5 tag names and custom components

easy to visualise code and components

considered easier to understand and debug

ease of abstraction due to JSX transpiler

abstracts process of converting markup to JavaScript

unity of concerns

no need for separation of view and templates

React encourages discrete component for each concern within an application

encapsulates the logic and markup in one definition

React JavaScript Library

JSX - composite components

example React component might allow us to output a custom heading

class OutputHeading extends Component {

 render() {

 return (

 // render passed props `output` value, pass heading size...

 <Text style={this.props.style}>{this.props.output}</Text>

);

 }

}

currently return a standard Text component

now update this example to work with dynamic values

JSX considers values dynamic if they are placed between curly brackets {..}
treated as JavaScript context

<OutputHeading output='Component Heading Tester' style={styles.heading3} />

React JavaScript Library

JSX - conditionals

a component's markup and its logic are inherently linked in React

this naturally includes conditionals, loops...

adding if statements directly to JSX will create invalid JavaScript

1. ternary operator

...

this.state.isComplete ? 'is-complete' : ''

...

2. variable

getIsComplete: function() {

 return this.state.isComplete ? 'is-complete' : '';

},

render() {

 var isComplete = this.getIsComplete();

 return (

 <Test complete={isComplete}>...</Test>

);

}

3. function call

getIsComplete: function() {

 return this.state.isComplete ? 'is-complete' : '';

},

render() {

 return (

 <Test complete={this.getIsComplete()}>...</Test>

);

}

to handle React's lack of output for null or false values

use a boolean value and follow it with the desired output

React JavaScript Library

JSX - special considerations for attributes - part 1

in JSX, there are special considerations for attribute

key

ref

1. key

an optional unique identifier that remains consistent throughout render passes

informs React so it can more efficiently select when to reuse or destroy a
component

helps improve the rendering performance of the application.

eg: if two elements already in the DOM/View need to switch position

React is able to match the keys and move them

does not require unnecessary re-rendering of the complete DOM/View

React JavaScript Library

JSX - special considerations for attributes - part 2

2. ref

ref permits parent components to easily maintain a reference to child components

available outside of the render function

to use ref, simply set the attribute to the desired reference name

render() {

 return (

 <TextInput ref='myInput' ... />

);

}

able to access this ref using the defined this.refs.myInput
access anywhere in the component

object accessed through this ref known as a backing instance

NB: not the actual DOM/View

a description of the component React uses to create the view when necessary

React JavaScript Library

data flow

data flows in one direction in React

namely from parent to child

helps to make components nice and simple, and predictable as well

components take props from the parent, and then render

if a prop has been changed, for whatever reason

React will update the component tree for that change

then re-render any components that used that property

Internal state also exists for each component

state should only be updated within the component itself

we can think of data flow in React

in terms of props and state

Image - React Native - Data Flow

basic data flow with FlatList

React Native - Basic Data Flow

React Native - Data Flow

basic data flow with FlatList - example

// custom abstracted component - expects props for list data...

class ListClassics extends Component {

 render() {

 return (

 <FlatList

 data={this.props.data}

 renderItem={({item}) => <Text style={styles.listItem}>{item.key}</Text>}

 />

);

 }

}

// default component - use View container, render list &c. with passed props...

export default class DataFlow extends Component {

 render() {

 let classics = [{ key: 'Greek'}, {key: 'Roman'}];

 return (

 <View style={styles.container}>

 <View style={styles.headingBox}>

 <Text style={styles.heading1}>

 {intro.heading}

 </Text>

 <Text style={styles.content}>

 {intro.description}

 </Text>

 </View>

 <View style={styles.listBox}>

 <ListClassics data={classics} />

 </View>

 </View>

);

 }

}

React JavaScript Library

data flow - props - part 1

props can hold any data and are passed to a component for usage

set props on a component during instantiation

let classics = [{ key: 'Greek'}, {key: 'Roman'}];

<ListClassics classics={classics}/>

also use the setProps method on a given instance of a component

var ListClassics = React.createClass({

 render: function() {

 return (

 <li className="classic">{this.props.classics}

);

 }

});

var classics = [{ key: 'Greek'}];

var listClassics = React.render (

 <ListClassics/>,

 document.getElementById('example')

);

listClassics.setProps({ classics: classics });

React Native

data flow - setNativeProps

React Native has a similar option called setNativeProps

React.js may directly manipulate a DOM node

likewise, we may need to directly modify or maniupulate a mobile app

React Native documentation recommend such usage as follows,

Use setNativeProps when frequent re-rendering creates a performance

bottleneck

not recommended for frequent use

we may need to use it for

regular animation updates

form management

graphics...

use with care

React Native

data flow - setNativeProps example

define function for clearTextInput

clearTextInput = () => {

 this._textInput.setNativeProps({text: ''});

 }

call clearTextInput() function on touch press

<Button

 onPress={this.clearTextInput}

 title='Tap to clear text'

 color='#585459'

/>

add TextInput component and define reference

<TextInput

 //arrow function call to set value to current component...

 ref={component => this._textInput = component}

 style={styles.textInput}

 placeholder={this.state.quoteInput}

 onChangeText={(quoteText) => this.setState({quoteText})}

 selectionColor='#585459'

/>

Image - React Native - Data Flow

setNativeProps example - default

React Native - setNativeProps - default

Image - React Native - Data Flow

setNativeProps example - add quote

React Native - setNativeProps - add quote

Image - React Native - Data Flow

setNativeProps example - clear text input

React Native - setNativeProps - clear text input

Extra notes - Cordova, JS, React Native...

lots of extra notes on course website and GitHub Notes

repository,

https://github.com/csteach422/notes/

including,

Cordova

CSS

Data store - incl. MongoDB and updates with Firebase

design

HTML & HTML5

JS - incl. intro, core, logic, async...

JS patterns

React Native

various - incl. Git & Heroku, Heroku & MongoDB

plus more notes will be added on Cordova, React Native,

data stores, API usage...

...& see source code examples in the course's source

repository on GitHub,

https://github.com/csteach422/source/

References

Cordova API docs

config.xml

Globalization

Hooks

Merges

Network Information

React Native

MDN - super

React JS - Component Lifecycle

React JS - componentDidUpdate

React JS - shouldComponentUpdate

React Native - Layout Props

https://cordova.apache.org/docs/en/latest/config_ref/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/guide/appdev/hooks/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-cli/index.html#merges
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-network-information/index.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/react-component.html#componentdidupdate
https://reactjs.org/docs/react-component.html#shouldcomponentupdate
https://facebook.github.io/react-native/docs/layout-props.html

