
Extra	Notes	-	Node.js	Todos	API	-	Heroku	and	Postman
Dr	Nick	Hayward

Contents

deploy	app	to	Heroku	with	MongoDB	publication
use	Postman	with	Heroku	app

app	-	deploy	app	to	Heroku	with	MongoDB	publication

We	can	now	modify	our	app	for	test	publication	to	Heroku	with	a	live	instance	of	MongoDB.

Config	modifications	for	current	app	code	include,

server.js

add	environment	port	variable	-	Heroku	can	dynamically	set	port	number	of	app	or	app	will	default	to	local	3030
app.listen() 	-	updated	to	use	variable	 port 	for	dynamic	port	setting

package.json

add	 start 	to	scripts	-	tells	Heroku	how	to	run	our	app
"start":	'node	server/server.js'

specify	node	version	to	use	for	hosted	app
add	 engines 	with	current	version	used	for	developing	app	on	local	system
e.g.	 "engines":	{"node":	"8.2.1"}

Then,	we	need	to	create	a	remote	instance	of	MongoDB	for	our	app's	data.	On	Heroku,	we	install	an	add-on	for	mLab
MongoDB,	which	is	a	hosted	service	for	MongoDB.

Further	details	on	Heroku	add-ons,

https://elements.heroku.com/addons

To	install	this	add-on	we	can	run	the	following	command	in	our	project's	CWD,

heroku	create	//create	a	new	heroku	app	if	necessary
heroku	addons:create	mongolab:sandbox	//install	add-on	for	mLab	MongoDB	with	free	
sandbox	plan

mLab	offers	a	free	sandbox	option,	which	is	installed	for	our	app.

Then,	for	connections	to	MongoDB,	we	can	modify	 mongoose-config.js 	to	add	a	dynamic	URL	for	the	db.	This	will
either	include	the	return	URL	for	mLab	or	the	current	default	for	the	local	machine,	e.g.

//connect	to	MongoDB	using	Mongoose	-	use	mLab	or	local	uri
mongoose.connect(process.env.MONGODB_URI	||	'mongodb://localhost:27017/NodeTodoApp');	
//	process	environment	returns	mLab	uri

For	some	apps	and	Git	repos,	it	may	also	be	necessary	to	ensure	that	the	local	project	is	linked	to	the	remote	app
repo	on	Heroku,	e.g.

heroku	git:remote	-a	app-name

Then,	we	can	push	our	project	repo	to	Heroku,	and	deploy	the	app,	e.g.

git	push	heroku	master

or	for	a	subtree	directory	in	a	git	repo,	e.g.

git	subtree	push	--prefix	node/apps/node-todos-api/v0.8	heroku	master

We	can	then	open	the	heroku	app	with	the	following	command,	e.g.

heroku	open

As	a	useful	extra,	we	can	also	check	the	logs	for	this	type	of	install,	e.g.

heroku	logs

app	-	use	Postman	with	Heroku	app

We	can	now	test	our	new	Heroku	app	with	Postman,	both	GET	and	POST	requests	for	the	new	remote	app.

We	might	test	sending	a	POST	request	to	the	app,	e.g.

https://your-app-url.herokuapp.com/todos

which	will	create	a	test	todo	item	that	is	set	in	the	app.	The	return	object	for	this	POST	request	will	be	as	follows,

{
				"__v":	0,
				"text":	"postman	test	todo	item	-	another	one...",
				"_id":	"597cd962d828090011f2b9ce",
				"completedAt":	null,
				"completed":	false
}

If	we	then	submit	a	GET	request	to	the	app's	API,

https://your-app-url.herokuapp.com/todos

we'll	get	the	expected	object	containing	an	array	of	todo	items,	e.g.

{
				"todos":	[
								{
												"_id":	"597cd962d828090011f2b9ce",
												"text":	"postman	test	todo	item	-	another	one...",
												"__v":	0,
												"completedAt":	null,
												"completed":	false
								}
]
}

We	can	test	retrieving	a	single	todo	item	by	ID,	e.g.

https://your-app-url/todos/597cd962d828090011f2b9ce

which	will	return	an	object	with	the	single	todo	item,

{
				"todo":	{
								"_id":	"597cd962d828090011f2b9ce",
								"text":	"postman	test	todo	item	-	another	one...",
								"__v":	0,
								"completedAt":	null,
								"completed":	false
				}
}

To	ease	switching	test	environments	in	Postman,	we	can	create	environments	for	local,	Heroku	&c.	and	then	save
them	for	easy	recall.

e.g.	in	the	top	right	corner	of	Postman	is	a	drop	down	menu	for	environemnt.

So,	we	can	now	create	an	environment	for	the	local	dev	and	remote	dev	projects.

In	Manage	Environments,	we	can	add	an	environment,	e.g.	 Todo	App	Local ,	and	then	set	values	for	the	following

url	=	localhost:3030

Then,	we	can	do	the	same	for	Heroku,	and	set	the	URL	value	to	the	Heroku	app	url,	e.g.

https://your-app-url.herokuapp.com

We	can	also	abstract	routes	and	params	as	required	for	testing	with	defined	environments.

e.g.	for	the	GET	request	in	the	Todo	App	collection	we	can	modify	the	URL	as	follows,

{{url}}/todos

If	we	switch	to	either	the	local	or	Heroku	environment,	this	single	request	is	now	abstracted	to	either	environment.

We	can	also	do	the	same	for	the	POST	request	in	the	collection.

