
Cordova	-	Guide	-	App	Development	-	Basics
Dr	Nick	Hayward

A	brief	overview	and	introduction	to	Apache	Cordova	application	development	and	design.

Contents

intro
Cordova	CLI	-	build	initial	project
Cordova	App	-	structure	recap	-	app	directory

www 	directory
index.html

add	Cordova	specifics
add	some	jQuery
add	some	jQuery	Mobile

jQuery	Mobile	-	test	transitions
jQuery	Mobile	-	navigation

intro
example	navigation

jQuery	Mobile	-	using	widgets
listviews
listviews	-	example
listviews	-	adding	some	formatted	content
listviews	-	updated	example

Cordova	app	-	current	design

Cordova	CLI	-	build	initial	project

Cordova	app	development	begins	with	creation	of	a	new	app	using	the	Cordova	CLI	tool.

An	example	pattern	and	usage	is	as	follows	for	initial	project	creation.

cd	/Users/ancientlives/Development/cordova
cordova	create	basic	com.example.basic	Basic
cd	basic

creates	new	project	ready	for	development

cordova	platform	add	android	--save
cordova	build

adds	support	for	native	SDK,	Android
then	builds	the	project	ready	for	testing	and	use	on	native	device

cordova	emulate	android

outputs	current	project	app	for	testing	on	Android	emulator

Cordova	App	-	structure	recap	-	app	directory

A	newly	created	project	will	include	the	following	type	of	structure	for	design	and	development.

e.g.

|-	config.xml
|-	hooks
|-	README.md
|-	platforms
			|-	android
			|-	platforms.json
|-	plugins
|		|-	android.json
|		|-	cordova-plugin-whitelist
|		|-	fetch.json
|-	res
|		|-	icon
|		|-	screen
|-	www
|		|-	css
|		|-	img
|		|-	index.html
|		|-	js

initially,	our	main	focus	will	be	the	 www 	directory

www 	directory

Then,	an	example	 www 	directory	will	be	as	follows,

e.g.

|-	www
|		|-	css
|					|-	index.css
|		|-	img
|					|-	logo.png
|		|-	index.html
|		|-	js
|					|-	index.js

index.html

The	initial	 index.html 	file	will	be	as	follows.

		<html>
						<head>
										<meta	http-equiv="Content-Security-Policy"	content="default-src	'self'
										data:	gap:	https://ssl.gstatic.com	'unsafe-eval';	style-src	'self'
										'unsafe-inline';	media-src	*">
										<meta	name="format-detection"	content="telephone=no">
										<meta	name="msapplication-tap-highlight"	content="no">
										<meta	name="viewport"	content="user-scalable=no,	initial-scale=1,
										maximum-scale=1,	minimum-scale=1,	width=device-width">
										<link	rel="stylesheet"	type="text/css"	href="css/index.css">
										<title>Hello	World</title>
						</head>
						<body>
										<div	class="app">
														<h1>Apache	Cordova</h1>
														<div	id="deviceready"	class="blink">

																		<p	class="event	listening">Connecting	to	Device</p>
																		<p	class="event	received">Device	is	Ready</p>
														</div>
										</div>
										<script	type="text/javascript"	src="cordova.js"></script>
										<script	type="text/javascript"	src="js/index.js"></script>
						</body>
		</html>

The	first	thing	we'll	do	is	clear	out	the	body	of	our	HTML	document,	and	then	start	adding	some	of	our	own	content
and	structure.	The	 cordova.js 	script	reference	is	always	added	to	an	app,	but	it	is	not	something	we	need	to
explicitly	add	to	the	app	install	itself.	It	is	provided,	by	default,	as	part	of	the	Cordova	create	and	build	for	a	current
project.

An	example	updated	file	might	be	as	follows,

<body>
				<div>
						<h3>Trip	Notes</h3>
						<p>
								welcome	to	trip	notes...collect	and	save	travel	data
						</p>
				</div>
				<script	type="text/javascript"	src="cordova.js"></script>
				<script	type="text/javascript"	src="js/index.js"></script>
</body>

A	lack	of	styling	will	be	an	issue.

Image	-	Cordova	App	-	Basic	v0.01

add	Cordova	specifics

By	default,	the	Cordova	container	for	the	application	will	expose	native	APIs	to	our	web	application	running	in	the
WebView.	However,	in	general	these	APIs	will	not	be	available	until	an	applicable	plugin	has	been	added	to	the
project.	The	container	also	needs	to	perform	some	preparation	before	the	APIs	can	be	used.

To	help	us	as	developers,	Cordova	informs	us	when	the	container,	and	associated	APIs,	are	ready	for	use.	It	fires	a
specific	event,	called	the	 deviceready 	event.	In	effect,	any	logic	within	our	application	that	requires	use	of	Cordova

APIs	should	be	executed	after	this	 deviceready 	notification	has	been	received.

add	some	jQuery

add	to	foot	of	 <body>

<script	type="text/javascript"	src="js/jquery.min.js"></script>

add	test	to	 trip.js 	file

function	tripNotes()	{
		alert("JS	Working...");
}

$(document).ready(tripNotes);

We	can	also	add	some	jQuery,	or	another	required	JS	library	or	plain	JS,	and	then	use	the	app's	container	with
standard	JS	functions.	For	example,	outputting	a	simple	alert.

Image	-	Cordova	App	-	Basic	v0.02

add	some	jQuery	Mobile

update	 head 	with	local	jQuery	Mobile	CSS

<head>
...
<link	rel="stylesheet"	type="text/css"	href="css/jquery.mobile.min.css"	/>
</head>

update	 body 	for	basic	app

<body>
		<div	data-role="page">
				<div	data-role="header">
						<h3>trip	notes</h3>
				</div><!--	/header	-->
				<div	role="main"	class="ui-content">
						<p>record	notes	from	various	cities	and	placed	visited..</p>
				</div><!--	/content	-->
				<div	data-role="footer">
						<h5>footer...</h5>
				</div><!--	/footer	-->
		</div><!--	/page	-->
		<script	type="text/javascript"	src="cordova.js"></script>
		<script	type="text/javascript"	src="js/index.js"></script>
		<script	type="text/javascript"	src="js/jquery.min.js"></script>
		<script	type="text/javascript"	src="js/jquery.mobile.min.js"></script>
		<script	type="text/javascript"	src="js/trip.js"></script>
</body>

Image	-	Cordova	App	-	Basic	v0.03

jQuery	Mobile	-	test	transitions

We	can	also	add	some	jQuery	Mobile	transitions,	and	test	some	basic	internal	navigation.

update	 index.html 	to	add	page	containers,	transitions...

<!--	page1	-->
<div	data-role="page"	id="page1">

		<div	data-role="header">
				<h3>trip	notes</h3>
				<p>record	notes	from	various	cities	and	placed	visited..</p>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p>View	-	page2</p>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	1</h5>
		</div><!--	/footer	-->
</div><!--	/page1	-->
<!--	page2	-->
<div	data-role="page"	data-dialog="true"	id="page2">
		<div	data-role="header">
				<h3>page	2</h3>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p>Cancel</p>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	2</h5>
		</div><!--	/footer	-->
</div><!--	/page2	-->

Image	-	Cordova	App	-	Basic	v0.04

Image	-	Cordova	App	-	Basic	v0.05

jQuery	Mobile	-	navigation

We	may	also	use	jQuery	Mobile	to	manage	the	navigation	stack	within	the	Cordova	app.

intro

So,	we've	just	added	some	jQuery	Mobile	to	an	initial	Cordova	app.	This	included	some	initial	pages,	transitions,	and
basic	navigation.

To	help	us	build	this	out	with	jQuery	Mobile,	for	example,	we'll	briefly	need	to	look	at	navigation	within	our	apps.	For
the	purposes	of	mobile	development,	this	navigation	thankfully	follows	an	asynchronous	pattern.

So,	navigation	in	jQuery	mobile,	for	example,	is	based	upon	loading	pages	into	the	DOM	using	AJAX.	This	will	modify
the	page's	content,	and	then	re-render	for	display	to	the	user.	It	will	also	include	a	set	of	aesthetically	pleasing,	and
useful,	animations	to	help	inform	the	user	of	changes	in	state,	and	therefore	appropriate	updates	in	the	content.

This	navigation	system	effectively	hijacks	a	link	within	a	page's	content	container,	and	then	routes	it	through	an	AJAX
request.	The	benefit	for	developers	is	a	particularly	useful,	and	almost	painless,	approach	to	asynchronous	navigation.
Most	of	the	time,	we	are	not	even	aware	of	this	updated	request.	In	spite	of	hijacking	the	link	request,	it	is	still	able	to
support	standard	concepts	such	as	anchors	and	use	of	the	back	button	without	breaking	the	coherence	and	logic	of
the	application.

Therefore,	jQuery	Mobile	is	able	to	load	and	view	groups	of	disparate	content	in	pages	within	our	initial	home
document.	In	essence,	the	many	combining	to	form	the	one	coherent	application.

Its	support	for	core	JavaScript	event	handling,	in	particular	for	URL	fragment	identifiers	with	 hashchange 	and	
popstate ,	allows	the	application	to	persist,	at	least	temporarily,	a	record	of	user	navigation	and	paths	through	the

content.	We	can	also	tap	into	this	internal	history	of	the	application,	and	again	hijack	certain	patterns	to	help	us	better
inform	the	user	about	state	changes,	different	paths,	content,	and	so	on.

example	navigation

The	following	is	an	example	of	using	the	jQuery	Mobile	standard	navigate	method,	 $.mobile.navigate ,	which	is
used	as	a	convenient	way	to	track	history	and	navigation	events.

With	this	simple	example,	we	can	set	our	record	information	for	the	link,	effectively	any	useful	information	for	the	link
or	affected	change	in	state.	We	can	then	log	the	available	direction	for	navigation,	in	this	example	the	fact	we	can	go
back,	the	url	for	the	nav	state,	and	any	available	hash.	In	our	example,	the	simple	appended	hash	in	the	url,	 #nav1 .

What	this	allows	us	to	do	is	keep	a	clear	record	of	user	traversal	through	the	application,	log	it	as	required	by	given
state	changes,	and	then	use	it	to	inform	our	application's	logic,	our	user,	and	so	on.

Demo	-	jQuery	Mobile	nav

jQuery	Mobile	-	using	widgets

Within	our	app's	webview	container,	we	can	add	standard	HTML	elements	for	any	required	content	containers.

For	example,	standard	HTML	and	HTML5	elements	such	as	 p ,	 headings ,	 lists ,	 sections ,	and	so	on.

Thankfully,	we	don't	necessarily	have	to	build	the	whole	application	from	scratch.

jQuery	Mobile	includes	a	wide-range	of	pre-fabricated	widgets	we	can	add	to	our	applications.	These	are	naturally
touch-friendly,	and	include	collapsible	elements,	forms,	responsive	tables,	dialogs,	and	many	more.	We've	already
seen	an	example	with	the	overall	 pageContainer 	widget.

listviews

A	good	example	of	this	type	of	pre-fabricated	widget	is	a	listview.

jQuery	Mobile	helps	us	style,	render	and	then	manipulate	standard	data	output	and	collections,	including	rendering	of
lists	as	interactive,	animated	views.

These	lists	are	coded	with	a	 data-role 	attribute,	as	we	saw	earlier	with	a	page	value	for	a	data	role...

data-role="listview"

This	allows	us	to	style	and	render	our	lists	with	additional	options	such	as	a	dynamic	search	filter.

http://linode4.cs.luc.edu/teaching/cs/demos/422/demo-nav/

Demo	-	jQuery	Mobile	listview	1
Demo	-	jQuery	Mobile	listview	2

listviews	-	example

<!--	listview	example	-->
<div>
		<ul	data-role="listview">
				Cannes
				Marseille
				Monaco
				Nice
		
</div>

simple	listview	with	slide	transition

<!--	page3	-->
<div	data-role="page"	id="page3">
		<div	data-role="header">
				<h3>page	3</h3>
		</div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<p><a	data-rel="back"	class="ui-btn">Return</p>
		<section	class="image-view">
				
		<section>
		</div><!--	/content	-->
		<div	data-role="footer">
				<h5>footer	-	page	3</h5>
		</div><!--	/footer	-->
</div><!--	/page3	-->

new	page	for	Monaco	image
Demo	-	jQuery	Mobile	listview	3

Listviews	are	a	lot	of	fun	and	very	useful	for	easily	organising	our	data,	as	we've	just	seen.

However,	we	can	also	use	a	listview	to	add	filtering	and	live	search	options	to	our	lists.

We	set	a	simple	client-side	filter	by	adding	an	attribute	for	 data-filter ,	and	then	set	the	value	to	 true

data-filter="true"

jQuery	Mobile	will	then	add	a	search	query	input	field	to	the	top	of	our	list	widget,	and	set	a	filter	for	the	entered	search
query.	Effectively,	it's	performing	a	pattern	match	using	a	partially	entered	string	against	strings	in	a	designated	list.	It
can	match	partial	fragments	of	a	list	item,	and	then	dynamically	filter	our	list	content.

We	can	also	set	some	default,	helpful	text	for	the	input	field.	Our	way	of	prompting	the	user	to	interact	with,	and
therefore	use	this	feature	correctly.

data-filter-placeholder="Search	Cities"

To	tidy	up	the	presentation	of	our	list,	we	can	also	add	an	inset	using	the	attribute

data-inset="true"

Now,	we	have	a	much	better	design	for	our	lists,	and	some	useful	filtering	options	as	well.

Demo	-	jQuery	Mobile	listview	4

http://linode4.cs.luc.edu/teaching/cs/demos/422/week5/demo1/
http://linode4.cs.luc.edu/teaching/cs/demos/422/week5/demo2/
http://linode4.cs.luc.edu/teaching/cs/demos/422/week5/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/422/week5/demo4/

listviews	-	adding	some	formatted	content

One	of	the	fun	aspects	of	working	with	a	framework	such	as	jQuery	Mobile,	and	others	such	as	the	excellent	Ionic
framework	and	OnsenUI,	is	the	simple	way	we	can	organise	and	format	our	data	presentations	and	views.

For	example,	if	we	have	a	grouped	dataset,	we	can	still	present	it	using	lists.	However,	we	can	also	add	informative
headings,	links	to	different	categories	within	this	dataset,	and	simple	styling	to	help	differentiate	components	within	the
list	interface.

Therefore,	we	structure	the	list	as	normal,	with	sub-headings,	paragraphs,	and	so	on.	Then,	jQuery	Mobile	gives	us	a
simple	option	for	setting	certain	list	content	as	an	aside.	For	example,

<p	class="ui-li-aside">1	image</p>

There	are	many	similar	tweaks	and	additions	we	can	add	to	help	improve	organisation	and	rendering	of	list	data.
Further	details	can,	of	course,	be	found	in	the	jQuery	Mobile	API.

listviews	-	updated	example

<ul	data-role="listview"	data-inset="true">
		<li	data-role="list-divider"	role="heading">French	Cities
		
				
						<h3>Monaco</h3>
						<p>Principality	of	Monaco</p>
						<p>Monaco	is	a	sovereign	city-state,	and	forms	part	of	the	French	Riviera...
</p>
						<p	class="ui-li-aside">1	image</p>
				
		
		
				
						<h3>Nice</h3>
						<p>Located	in	the	south	of	France,	close	to	the	border	with	Italy...</p>
				
		

Demo	-	jQuery	Mobile	listview	5

Image	-	jQuery	Mobile	-	add	some	organisation

http://linode4.cs.luc.edu/teaching/cs/demos/422/week5/demo5/

Image	-	Cordova	app	-	Trip	Notes	-	example	1

Image	-	Cordova	app	-	Trip	Notes	-	example	2

Cordova	app	-	current	design
Our	current	design	includes	a	simple	header,	main,	and	a	footer.	To	help	with	the	rendering	of	our	app's	page,	we	can
fix	this	footer	to	the	bottom	of	the	view	by	adding,	for	example,	the	following	attribute	in	the	HTML,

<div	data-role="footer"	data-position="fixed">
		<h5>footer	-	page	3</h5>
</div><!--	/footer	-->

We	can	set	this	attribute	on	any	of	our	footer	sections	in	any	of	the	views.

Image	-	Cordova	app	-	Trip	Notes	-	example	3

