
Cordova	-	Guide	-	App	Introduction
Dr	Nick	Hayward

A	brief	overview	and	introduction	to	Apache	Cordova	application	development.

Contents

Development	paths
cross-platform	CLI	workflow
platform-centric	workflow
careful	choice

Creating	a	new	project
Cordova	App	-	basic	outline	&	structure

anatomy	of	a	template
index.html

index.js

Architecture	outline
webview
native	functionality

API	Example	Call
Cross-platform	power
A	few	initial	useful	CLI	commands

Development	paths

Since	the	advent	of	version	3.0	of	Apache	Cordova,	it's	been	possible	to	develop	apps	using	two	distinct	workflows
and	paths.	These	workflows	include,

Cross-platform	CLI
Platform-centric

cross-platform	CLI	workflow

The	cross-platform	CLI	allows	us	to	develop	apps	for	a	broad,	wide-ranging	collection	of	mobile	OSs	and	native
devices.	This	workflow	is	focused	upon	leveraging	the	power	of	the	 cordova 	utility,	which	has	become	known	as	the
Cordova	CLI.	This	CLI	is	considered	a	high-level	tool,	which	has	been	designed	to	help	abstract	many	of	the
development	considerations	normally	associated	with	multiple	platforms.	In	effect,	it	has	been	designed	to	abstract
much	of	the	functionality	of	lower-level	shell	scripts,	normally	required	for	the	other	workflow	option,	platform-centric.

e.g.

cordova	platform	add	android	--save

platform-centric	workflow

We	use	platform-centric	to	focus	our	development	on	one	native	platform,	for	example	just	Android	or	just	iOS.	This
approach	is	slightly	more	complicated,	and	involved,	but	it	also	allows	greater	flexibility	and	customisation	for	focused,
platform-specific	app	development.	For	example,	if	you	need	to	augment	your	Cordova	app	with	native	components
developed	in	the	SDK,	then	this	workflow	is	preferable.	This	workflow	has	been	tailored	for	each	platform,	and	as	such

relies	on	a	set	of	lower	level	shell	scripts.	It	also	features	a	custom	plugin	utility	designed	to	help	us	apply	plugins.

careful	choice

Therefore,	we	will	begin	our	development	and	journey	with	Cordova	using	the	cross-platform	workflow,	and	the
command-line	interface.	We	will	then	have	the	option	to	migrate	and	use	the	platform-centric	workflow	as	the	nature	of
our	apps	becomes	more	complicated	and	lower-level.

However,	a	few	notes	of	caution.	Once	you	switch	from	the	CLI-based	workflow	to	the	platform-centric	you	can't	go
back	easily.	This	is	because	the	CLI	approach	keeps	a	common	set	of	cross-platform	source	code.	On	each	build,	it
uses	this	code	to	ensure	broad	support	and	compliance,	and	therefore	overrides	any	platform-specific	modifications
and	code.	To	maintain	such	modifications,	it's	best	to	develop	using	the	platform-centric	shell	tools.

Creating	a	new	project

So,	the	basic	outline	for	creating	a	shell	or	template	for	our	project	is	as	follows.	This	project	creation	is	for	our	newly
minted	Android	environment.

The	simplest	options	are	as	follows,

cordova	create	basic	com.example.basic	Basic
cd	basic
cordova	platform	add	android	--save
cordova	build

We	can	then	launch	this	new	Cordova	project	application,	for	example	in	the	emulator

cordova	emulate	android

and	you	should	now	see	the	Cordova	start	screen	for	the	newly	minted	project	application.

Cordova	App	-	basic	outline	&	structure

So,	if	we	take	a	closer	look	at	the	previous	commands	we	can	start	to	see	the	initial,	basic	structure	of	our	Cordova
apps.

cordova	create	basic	com.example.basic	Basic

The	first	parameter	of	this	new	project	command	represents	the	path	of	our	project.	In	this	instance,	we	are	simply
creating	a	new	directory	in	the	current	working	directory	called	basic.	The	second	and	third	parameters	are	initially
optional,	but	it	tends	to	help	to	define	at	least	the	third	parameter,	which	is	the	visible	name	of	the	project.	In	our	case,
we've	now	called	our	new	project	422Basic.

We	can	subsequently	edit	either	of	the	last	two	parameters	in	the	projects	 config.xml 	file,	which	is	at	the	root	level
of	our	newly	created	project.

anatomy	of	a	template

So,	our	new	project	includes	the	following	default	structure.	These	are	the	parts	initially	of	interest	to	our	app
development,

config.xml

hooks
		-	README.md
platforms
		-	android
		-	platforms.json
plugins
		-	android.json
		-	cordova-plugin-whitelist
		-	fetch.json
res
		-	icon
		-	screen
www
		-	css
		-	img
		-	index.html
		-	js

Initially,	our	main	focus	will	be	within	the	 www 	directory.

As	mentioned,	the	 www 	directory	will	be	the	initial	primary	focus.	It	includes	three	child	directories,

css
img
js

with	the	all	important	 index.html 	file	at	the	root	level	as	well.	In	effect,	this	is	the	key	directory	where	we	store	our
application's	HTML,	JavaScript,	and	CSS	code.	These	directories	currently	include	three	primary	files,	which	include

index.css

index.js

logo.png

The	 logo.png 	image	serves	as	the	initial,	default	Cordova	logo.	After	initial	testing,	we	no	longer	need	this	specific
logo,	and	can	then	customise	it	for	our	specific	app.

The	other	primary	file,	at	this	stage	of	development,	is	 config.xml .	This	file	stores	configuration	settings	for	the
application,	including	settings	such	as	the	app's	name,	a	description,	author	email	and	name,	and	the	src	url	for	the
primary	content	of	the	application.	This	configuration	file	also	specifies	permitted	domains	for	our	application,	which	is
set	to	global	by	default.	For	development	purposes,	this	is	normally	OK,	but	it	can	quickly	become	a	security	concern
for	production	apps.	We'll	return	to	this	setting	as	we	prepare	our	apps	for	distribution	and	publication.

We	are	also	not	limited	by	the	default	configuration	settings.	We	can	add	an	element	for	 preference ,	which	allows
us	to	specify,	for	example,	whether	the	app	will	appear	fullscreen	by	default	across	all	deployed	platforms,	or	whether
to	hide	the	accessory	bar	above	iOS	and	BlackBerry	keyboards.	There's	quite	a	bit	we	an	customise	within	such
settings.

There	are	a	further	three	important	directories	that	allow	us	to	manipulate	and	configure	our	Cordova	application.	They
include,

platforms
plugins
hooks

The	platforms	directory	includes,	unsurprisingly,	our	application's	currently	supported	native	platforms.	For	our
current	app,	this	includes	Android,	which	we	added	as	part	of	the	initial	project	creation.

plugins	includes	all	of	the	application's	used	plugins.	This	is	the	add-on	functionality	that	we	add	to	a	Cordova	app	to
enable	access	to	the	device's	native	functions.	After	we	add	a	given	plugin,	we	find	a	matching	directory	at	the	root
level	of	this	directory.	For	example,	if	we	add	the	 media 	plugin,	we	will	have	a	matching	media	directory	in	this

plugins	directory.	This	directory	simply	includes	the	required	project	code	for	that	given	plugin.

hooks	contains	a	set	of	scripts	used	to	customise	commands	in	Apache	Cordova.	Effectively,	this	allows	us	to
customise	scripts	for	code	that	will	execute	either	before	or	after	a	given	Apache	Cordova	command	is	set	to	run.
These	are	written	for	fine	tuning,	and	custom	control	of	Cordova	commands,	primarily	on	the	developer's	local	system.
For	example,	we	might	create	a	hook	that	updates	project	text,	such	as	 development ,	to	 production 	when	we	set
Cordova	to	build	a	finished	project,	and	so	on...

Let's	now	move	back	to	the	 www 	directory,	and	start	working	with	the	three	primary	files	that	will	initially	help	us
develop	our	Cordova	application.	These	include

index.html

index.js

index.css

These	files	will,	effectively,	become	second	nature	to	us	as	we	develop	more	Cordova	applications.

index.html

index.html 	-	default	template	for	new	project

<body>
				<div	class="app">
								<h1>Apache	Cordova</h1>
								<div	id="deviceready"	class="blink">
												<p	class="event	listening">Connecting	to	Device</p>
												<p	class="event	received">Device	is	Ready</p>
								</div>
				</div>
				<script	type="text/javascript"	src="cordova.js"></script>
				<script	type="text/javascript"	src="js/index.js"></script>
</body>

The	default	 index.html 	page	for	a	Cordova	project	application	is	very	straightforward.	However,	there	are	a	few
initial	points	that	we	need	to	consider.

<div	class="app"> 	is	the	primary	parent	section,	which	acts	as	the	app's	container.	It	contains	a	child	 div ,
with	the	unique	ID	 deviceready ,	and	this	 div 	has	two	key	paragraphs	that	are	triggered	relative	to	state
changes	in	the	app.	So	the	app	can	simply	update	its	state	relative	to	the	event	being	actioned	and	listened.

The	events	are	monitored	and	controlled	using	the	app's	initial	JavaScript.	In	the	 initialize() 	method	we	are
calling	the	 bindEvents() 	method,	which	adds	an	event	listener	to	this	 deviceready 	div.	When	the	device	is	ready,
the	 onDeviceReady() 	method	is	called,	and	a	subsequent	call	is	then	made	to	the	app's	object.

So,	in	real	terms,	this	simply	means	that	when	the	device	is	ready	the	 event	listening 	paragraph	will	be	hidden,
and	the	 event	received	paragraph 	is	now	shown.	In	its	default	state,	this	will	output	to	the	user	that	the	
Device	is	Ready ,	and	that	Cordova	has	now	fully	loaded.

index.js

js/index.js

var	app	=	{
				//	Application	Constructor
				initialize:	function()	{
								this.bindEvents();
				},
				//	Bind	Event	Listeners
				//
				//	Bind	any	events	that	are	required	on	startup.	Common	events	are:

				//	'load',	'deviceready',	'offline',	and	'online'.
				bindEvents:	function()	{
								document.addEventListener('deviceready',	this.onDeviceReady,	false);
				},
				//	deviceready	Event	Handler
				//
				//	The	scope	of	'this'	is	the	event.	In	order	to	call	the	'receivedEvent'
				//	function,	we	must	explicitly	call	'app.receivedEvent(...);'
				onDeviceReady:	function()	{
								app.receivedEvent('deviceready');
				},
				//	Update	DOM	on	a	Received	Event
				receivedEvent:	function(id)	{
								var	parentElement	=	document.getElementById(id);
								var	listeningElement	=	parentElement.querySelector('.listening');
								var	receivedElement	=	parentElement.querySelector('.received');

								listeningElement.setAttribute('style',	'display:none;');
								receivedElement.setAttribute('style',	'display:block;');

								console.log('Received	Event:	'	+	id);
				}
};

Image	-	Cordova	Splash	Screen

Architecture	outline

So,	as	we've	now	seen,	the	core	architecture	for	applications	developed	using	Cordova	includes,

HTML5
CSS
JS

We	can	also	supplement	this	core	with	additional	helper	files,	including	JSON	(JavaScript	Object	Notation)	resource
files.

As	part	of	the	architecture	of	Cordova,	to	enable	access	to	a	device's	native	functionality	JS	application	objects	(or
methods)	allow	us	to	call	Cordova	APIs	for	the	chosen	mobile	OS.	If	you	want	to	access	functionality	on	an	Android
device,	you	use	the	Cordova	Android	API.	Likewise,	for	iOS	we	simply	call	the	API	for	iOS	made	available	by	Cordova.

As	noted,	we	can	also	develop	our	own	custom	plugins	to	augment	and	improve	support	and	access	to	native

functionality.	We'll	cover	this	aspect	of	Cordova	development	later	in	the	semester.

Image	of	Apache	Cordova	architecture

The	following	diagram	summarises	the	core	architecture	for	Cordova	application	development.

![Apache	Cordova	Architecture](./media/images/cordova-architecture.png)	
Source	-	[Apache	Cordova](https://cordova.apache.org/)

So,	the	core	architecture	of	Cordova	creates	a	single	screen	in	the	native	application.	This	single	screen	simply
contains	a	WebView,	which	uses	all	the	device's	available	screen	space.	Cordova	uses	this	native	WebView	to	enable
loading	the	application's	HTML,	and	any	associated	required	CSS	and	JavaScript	files.

A	WebView	is	a	native	view,	which	allows	us	to	develop	using	HTML	based	content.	In	effect,	this	native	mobile	OS
view	allows	us	to	leverage	the	power	and	functionality	of	a	mobile	web	browser	within	a	contained	native	app.

webview

Using	this	WebView,	as	the	native	application	launches	Cordova	loads	the	application's	default	startup	page,	in
essence	its	 index.html 	page,	and	then	passes	control	of	the	app	to	the	native	WebView.	This	allows	our	user	to
control	the	application	as	normal,	and	interact	with	our	application	in	a	native	manner.	They	open	a	Cordova
developed	app,	and	get	a	native	app	experience.	For	all	intent	and	purpose,	the	user	will	not	be	able	to	tell	the
difference.

This	user	interaction	can	include	all	manner	of	standard	native	interaction,	for	example	entering	data	in	input	fields,
selecting	items	or	buttons,	and	viewing	data	and	results	as	requested.

Due	to	this	pattern	of	interaction	with	the	WebView,	a	user	feels	they	are	simply	interacting	with	a	native	application.
To	the	user,	there	is	no	apparent	difference	between	an	app	developed	with	Cordova	or	the	native	Android	or	iOS
SDK	and	APIs.

It's	useful	to	know,	even	at	this	early	stage,	that	a	WebView	thankfully	has	an	implementation	in	all	of	the	major	mobile
OSs.	For	example,	Android	has	a	class	called

android.webkit.WebView

Likewise,	iOS	references	the	 UIWebView 	which	is	part	of	the	UIKit	framework.	Windows	refers	to	a	WebView	class,

Windows.UI.Xaml.Controls

n.b.	XAML	means	Extensible	Application	Markup	Language

native	functionality

Cordova	provides	access	to	many	types	of	native	functionality	including,	for	example,	sound	and	audio	controls	and
recording,	camera	and	photo	access	and	capturing,	and	much	more.

Cordova	leverages	sets	of	JavaScript	APIs,	which	allow	developers	to	access	this	native	functionality	from	within	their
JavaScript	code.

Many	different	APIs	are	currently	available,	each	with	differing	levels	of	default	support	for	native	functionality.

Image	-	Apache	Cordova	Native	Functionality

The	following	diagram	shows	an	overview	of	how	this	works	conceptually,

Source	-	Apache	Cordova

This	architecture	is	a	particularly	elegant	approach	to	solving	the	issue	of	cross-platform	development.	It	allows
developers	to	leverage	a	unified	API	interface	to	perform	specific	native	functions,	including	camera	captures,	photo
rendering,	audio,	and	so	on.	This	call	to	the	native	camera,	audio	&c.	is	transparent	across	the	various	mobile
platforms	via	the	available	APIs.

Therefore,	to	call	the	native	functionality	per	platform,	we	simply	call	the	required	API	for	the	chosen	mobile	OS,	such
as	Android	or	iOS.	The	API	will	vary	per	mobile	OS,	but	the	call	from	Cordova	is	essentially	the	same.	It's	the	plugins
that	give	Cordova	its	power.

API	Example	Call

So,	let's	dive	into	some	code	and	see	an	example	of	how	to	perform	a	call	to	a	Cordova	JavaScript	API.	For	example,
let's	see	how	we	can	make	a	call	to	access	the	camera	functionality	of	a	device.

If	we	want	to	get	a	picture	from	the	camera,	we	call	the	following	using	Cordova

navigator.camera.getPicture(onSuccess,	onFail,	{	quality:	75,
		destinationType:	Camera.DestinationType.DATA_URL
});

function	onSuccess(imageData)	{
		var	image	=	document.getElementById('Image');
		image.src	=	"data:image/jpeg;base64,"	+	imageData;
}

function	onFail(message)	{
		alert('Error:	'	+	message);
}

https://cordova.apache.org/

So,	as	you	should	see	with	this	simple	code	snippet,	we	are	making	an	initial	call	to	the	method	 getPicture() 	of	the
camera 	object.	This	call	is	performed	with	3	parameters,

onSuccess 	-	a	callback	that	allows	us	to	tell	the	app	what	to	do	if	the	call	and	returned	data	is	successful
onFail 	-	another	callback	that	tells	the	app	how	to	handle	an	error	or	false	return	-	for	example,	an	error	is
thrown,	and	this	callback	will	handle	output	of	a	suitable	error	message
quality

quality:	75,	destinationType:	Camera.DestinationType.DATA_URL

This	third	parameter	is	slightly	different	as	it	contains	a	JS	object	with	configuration	parameters.	These	two	parameters
are	for	 quality 	and	 destinationType .	Quality	can	be	from	 0	to	100 ,	and	the	destinationType	refers	to	the
required	format	for	the	returned	data	value.	This	can	be	set	to	one	of	3	possible	values

DATA_URL 	-	the	format	of	the	returned	image	will	be	a	Base64	encoded	string
FILE_URL 	-	this	returns	the	image	file	URL
NATIVE_URI 	-	this	refers	to	the	images	native	URI

Therefore,	for	this	example,	if	the	return	is	a	success	we	will	get	a	Base64	encoded	string	of	the	image	we	just
captured	using	the	camera	on	the	native	device.

So,	for	this	example,	we	are	leveraging	the	power	of	the	Apache	Cordova	camera	plugin	code.	So,	for	the	Android
camera	plugin,	this	gives	us	the	power	of	the	underlying	Android	class,	wrapped	in	a	layer	that	we	can	leverage	from
our	JavaScript	code.	The	plugin	is	written	natively	for	Android,	but	we	access	it	using	JS	with	Cordova.	The	camera
plugin	for	other	OSs,	e.g.	iOS,	follows	the	same	pattern.

In	effect,	we	issue	a	call	from	JS	using	Cordova	to	the	native	code	in	the	plugin.	The	plugin	processes	this	request,
and	then	returns	the	appropriate	value,	either	for	a	success	or	a	failure.	In	our	example,	if	the	request	to	the	camera	is
successful,	the	Android	plugin	will	return	a	string	to	the	JS	Cordova	client,	as	requested.

Similarly,	we	can	leverage	the	same	pattern	for	accessing	a	camera's	functionality	with	iOS,	for	example,	or	another
platform	assuming	there	is	an	appropriate	plugin	available	for	that	mobile	OS.	If	not,	then	we	can	write	our	own	custom
plugin.

Cross-platform	power

As	you	can	see	from	this	brief	example,	we	can	implement	capturing	a	photo	from	the	device's	native	camera	on
multiple	mobile	platforms.	With	this	Cordova	plugin	architecture,	it	is	not	even	necessary	to	understand	how	the	photo
capture	is	implemented	or	handled	natively,	as	long	as	we	can	call	the	API	from	the	JS	interface.	The	Cordova	plugin
handles	the	native	calls	and	processing	for	each	device.

Naturally,	this	enables	us	to	concentrate	on	developing	our	cross-platform	apps	without	separate	development	for
each	required	mobile	OS.

A	few	initial	useful	CLI	commands

command example description

cordova cordova general	command	-	outputs	overview	with	5	categories	of
information	and	help

-v cordova	-v check	current	installed	version	of	cordova

requirements cordova	requirements check	requirements	for	each	installed	platform

create

cordova	create	basic
com.example.basic
422Basic

creates	new	project	with	additional	arguments	for	directory
name,	domain-style	identifier,	and	the	app's	display	title

platform	add cordova	platform	add
android	--save

specify	target	platforms,	eg:	Android,	iOS...	(n.b.	SDK
support	required	on	local	machine)

platform	ls cordova	platform	ls checks	current	platforms	for	cordova	development	on	local
machine	and	lists	those	available

platform
remove
(platform	rm)

cordova	platform	rm
android

remove	an	existing	platform

build cordova	build iteratively	builds	the	project	for	the	available	platforms

build	ios cordova	build	ios limit	scope	of	build	to	a	specific	platform	(useful	for	testing	a
single	platform...)

prepare cordova	prepare	ios prepare	a	project,	and	then	open	and	build	&c.	with	native
IDE	(eg:	XCode,	Android	Studio...)

compile cordova	compile	ios compile	ios	specific	version	of	app

emulate cordova	emulate	android rebuilds	an	app	and	then	launches	it	in	a	specific	platform's
emulator

run cordova	run	android run	an	app	on	a	native	device	connected	to	the	local
machine

run	--list cordova	run	--list check	available	emulators,	e.g.	Android	AVDs

