
Cordova	-	Guide	-	Working	with	Plugins
Dr	Nick	Hayward

A	brief	overview	and	introduction	to	Apache	Cordova	plugins,	and	their	general	usage	in	application	development.

Contents

intro
create	a	project
add	plugins
update	 index.html

index.html 	page	structure

add	some	logic
onDeviceReady()

audio	playback	logic
update	media	playback
add	a	stop	button

stop	button

add	a	pause	button
update	stop	button
check	current	playback	position
further	considerations	for	plugin	usage

Intro

We're	now	going	to	start	looking	at	some	of	the	plugins	available	for	Cordova,	and	we'll	start	with	the	simple	task	of
playing	back	some	media.	In	this	case,	an	audio	file,	which	we'll	include	as	default	with	the	application.

What	this	allows	us	to	do,	quite	simply,	is	test	our	initial	Cordova	blueprint	with	jQuery	Mobile,	add	some	existing
plugins,	and	then	see	how	they	fit	together	to	create	a	coherent,	basic	application.

Create	a	project

So,	the	first	thing	we	need	to	do	is	create	our	new	project,	which,	for	the	sake	of	elaborate	naming	schemes,	I've
chosen	to	call	plugintest1

cordova	create	plugintest1	com.example.plugintest	plugintest1

As	we're	building	this	test	application	for	use	with	Android,	obviously	we'll	need	to	add	support	for	that	platform

cordova	platform	add	android	--save

Likewise,	if	we	want	to	support	other	platforms,	such	as	iOS,	we'll	also	need	to	add	the	appropriate	platform	support.

Then,	we	can	transfer	our	default	 www 	directory,	and	start	updating	some	of	the	settings	in	the	 config.xml 	file	for
the	application.

For	example,	we'll	want	to	update	some	of	the	metadata	for	the	application,	including	author,	description,	and	name.

Then,	we	can	quickly	run	this	base	for	our	new	application,	just	to	test	that	we	have	a	working	starting	point	for	the	rest
of	our	application.



//run	in	the	Android	emulator	with	default	AVD
cordova	emulate	android
//run	on	a	connected	Android	device
cordova	run	android

Image	-	Cordova	app	-	Plugin	Test	1	-	getting	started

Add	plugins

The	next	thing	to	do	as	we	setup	our	plugin	test	application	is	to	add	our	required	plugins.	For	this	test	application,	we
are	going	to	add	the	device,	file,	and	media	plugins.



The	device	plugin	is	added	to	allow	us	to	check	and	read	information	about	the	current	device,	in	effect	our	Android
phone	or	tablet.

The	file	plugin	is	required	to	allow	us	to	simply	access	the	device's	underlying	filesystem.

And,	the	fun	plugin	is	media,	which	helps	us	record	and	playback	media	files,	including	our	required	audio	test	file.

To	add	these	plugins	to	our	project,	we	can	issue	the	following	Cordova	commands,

n.b.	NPM	install	is	now	preferred	option...

//add	device	plugin	-	Git	and	NPM	options
cordova	plugin	add	https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.git
cordova	plugin	add	cordova-plugin-device
//add	file	plugin	-	Git	and	NPM	options
cordova	plugin	add	https://git-wip-us.apache.org/repos/asf/cordova-plugin-file.git
cordova	plugin	add	cordova-plugin-file
//add	media	plugin	-	Git	and	NPM	options
cordova	plugin	add	https://git-wip-us.apache.org/repos/asf/cordova-plugin-media.git
cordova	plugin	add	cordova-plugin-media

Then,	to	ensure	these	new	plugins	are	applied	to	our	current	project,	we	run	the	following	build	command	in	the
project's	working	directory

cordova	build

Check	for	any	errors	in	the	output,	and	hopefully	we're	OK	to	continue	with	development.

Update	 index.html

The	next	thing	we	need	to	do	is	update	our	 index.html 	page	to	create	the	basic	layout	to	allow	us	to	load	and	use
media	files.

As	before,	we're	going	to	use	a	single	page	application	structure,	and	we'll	include	our	content	categories	for	 header
and	 main .	Within	 main ,	we're	going	to	add	a	content	grouping,	which	will	allow	us	to	organise	our	playback	buttons
for	the	media.	We	can	then	wrap	these	buttons	in	a	 div 	with	a	data-role	set	to	 fieldcontain .	This	simply	signifies
that	we	have	a	contiguous	group	of	form,	input,	or	data	elements	that	we	can	then	arrange	and	style	in	a	similar
manner.

We	then	use	this	grouping	to	add	our	play	button,	allowing	us	to	load	our	sample	file	using	the	installed	plugins.	For
the	button,	we're	going	to	use	an	 input 	element	with	type	set	to	button,	a	useful	little	icon,	although	not	essential,	a
default	value	for	the	button	itself	set	to	Play.

index.html 	page	structure

<!--	homepage	-->
<div	data-role="page"	id="home">
	 <div	data-role="header">
				<h3>plugin	test	-	media</h3>
	 </div><!--	/header	-->
		<div	role="main"	class="ui-content">
				<!--	container	for	media	options...	-->
				<div	data-role="content">
						<!--	group	buttons	&c.	-->
						<div	data-role="fieldcontain">
								<h3>Plugin	Media	Player</h3>
								<p>choose	a	media	file	to	playback...</p>
								<input	type="button"	id="playAudio"	data-icon="refresh"	value="Play"	/>
						</div>
				</div>
	 </div><!--	/content	-->



</div><!--	/homepage	-->

Image	-	Cordova	app	-	Plugin	Test	1	-	getting	started

Add	some	logic

Let's	now	add	some	logic	to	our	application,	starting	with	some	updates	to	our	JavaScript	to	allow	us	to	handle	events.
For	example,	we'll	need	to	add	handlers	for	listeners	for	each	button	we	add	to	the	application,	including	the	initial
play	button.

We'll	add	this	code	to	our	application's	custom	JavaScript	file.



So,	the	first	thing	we	need	to	do	is	setup	the	application	in	response	to	Cordova's	 deviceready 	event.

Quick	reminder	-	this	is	the	event	that	informs	us	that	the	installed	plugins	are	now	loaded	and	ready	for	use.	There's
no	point	trying	to	load	our	handlers	before	the	applicable	plugins	are	available	in	the	system.

We'll	need	to	add	a	function	for	the	 deviceready 	event,	which	will	allow	us	to	bind	our	handler	for	the	tap	listener	on
the	play	button

functon	onDeviceReady()	{
		$("#playAudio").on("tap",	function(e)	{
				//add	code	for	action...
		});
}

onDeviceReady()

We	can	also	add	any	other	required,	initial	functions	later	to	this	same	start-up	function.	We	then	wrap	this	initial
function	in	our	main	application	loader,	which	checks	that	the	device	is	ready,	and	then	adds	any	required	handlers
&c..

(function()	{
	 //check	for	page	initialisation	and	#home
	 $(document).on("pageinit",	"#home",	function(e)	{
	 	 //Cancels	the	event	if	it	is	cancelable,	without	stopping	further	
propagation	of	the	event
	 	 e.preventDefault();

	 	 //loader	function	after	deviceready	event	returns
	 	 function	onDeviceReady()	{
	 	 	 //play	audio
	 	 	 $("#playAudio").on("tap",	function(e)	{
	 	 	 	 //audio	playback	logic
	 	 	 	 alert("play	sound...");
	 	 	 });

	 	 }
	 	 //as	deviceready	returns	load	onDeviceReady()
	 	 $(document).on("deviceready",	onDeviceReady);
	 });

})();

Image	-	Cordova	app	-	Plugin	Test	1	-	getting	started



Audio	playback	logic

We've	now	setup	and	tested	the	logic	of	a	basic	app,	and	added	our	handlers	for	 deviceready 	and	clicking	the
audio	playback	button.

However,	we	still	can't	playback	an	audio	file.	So,	we	need	to	return	to	our	logic	for	the	 #playAudio 	button.	A	simple
way	to	playback	audio,	thereby	testing	the	media	plugin	is	as	follows,

function	playAudio()	{
		//initial	url	relative	to	WWW	directory	-	then	built	for	Android
		var	$audioURL	=	buildURL("media/audio/egypt.mp3");
		var	$audio	=	new	Media($audioURL,	null,	errorReport);



		$audio.play();
		alert("playing	audio...have	fun!");
}

and	we	can	add	associated	media	loaders,	for	the	audio	file,	and	basic	error	checks	in	case	the	media	file	is	missing,
corrupt	&c..

function	errorReport(error)	{
		alert("Error	with	Audio	-	"	+	JSON.stringify(error));
}

function	buildURL(file)	{
		if	(device.platform.toLowerCase()	===	"android")	{
				var	$androidFile	=	"/android_asset/www/"	+	file;
				return	$androidFile;
		}
}

Image	-	Cordova	app	-	Plugin	Test	1	-	getting	started



Update	media	playback

As	we	saw	with	the	plugin	test	for	media	playback,	we	can	allow	a	user	to	play	a	default	audio	file	in	their	app.	By
simply	touching	a	UI	element,	in	this	example	a	button,	the	app	requested	a	file	from	the	host	file	system,	which	was
then	loaded	for	playback	within	the	Cordova	app.

By	leveraging	native	functionality	through	the	included	plugins	for	device,	file,	and	media	we	went	from	the	user
interaction	in	the	UI,	through	the	JS	API	for	the	plugins,	down	to	the	native	device	itself.

However,	the	selected	file	would	continue	to	play	in	the	app	unless	a	user	refreshed	the	audio	stream	by	once	more
touching	the	playback	button,	or	simply	exited	the	app	to	stop	all	playback.	Not	an	ideal	solution	for	a	media



application.

An	obvious	addition	to	any	media	playback	app	is	the	simple	option	to	pause,	and	then	stop,	a	media	stream	whilst	the
app	is	running.

So,	we	need	to	add	options	within	the	UI	for	pause	and	stop	functionality.

Add	a	stop	button

To	add	functionality	to	stop	a	currently	playing	media	file,	we	need	to	consider	how	the	audio,	for	example,	will	be
stopped.

For	example,	do	we	allow	a	user	to	explicitly	stop	the	audio	stream	by	pressing	a	button,	or	perhaps	we	simply
playback	a	short	snippet	of	the	audio	stream	and	then	automatically	stop	playback.	Your	choices	will	be	informed	by
the	requirements	of	the	app	itself,	and	the	options	you	wish	to	offer	your	users.	You	might	not	want	a	user	to	be	able	to
stop	audio	playback,	at	least	for	a	given	period	of	time.

For	example,	you	might	have	some	introductory	music	or	theme	for	a	game,	which	needs	to	play	for	at	least	the	first
few	seconds	as	the	loading	screen	is	shown.

The	basic	logic,	however,	regardless	of	choice	offered	to	the	user,	is	inherently	the	same.	We	are	using	the	available
methods	exposed	by	the	Cordova	Media	plugin,	which	we	call	in	our	app's	JS	logic.

These	initial	methods	include,

media.pause
media.stop
media.release

We'll	go	through	each	one,	and	see	how	we	can	use	them	to	update	the	functionality	of	our	app.

stop	button

We	can	start	to	update	our	existing	app	by	adding	a	stop	button	to	the	UI,	which	will	allow	our	user	to	simply	tap	a
button	to	stop	playback	of	the	current	media	file.

<p>Stop	playback...</p>
<input	type="button"	id="stopAudio"	data-icon="delete"	value="Stop"	/>

We	can	then	update	our	app's	JS	logic	to	listen	for	a	tap	event	on	the	stop	button,	and	then	call	the	stop	method	on
the	media	object.

//button	-	stop	audio
$("#stopAudio").on("tap",	function(e)	{
	 //stop	audio	logic
	 e.preventDefault();
		//call	custom	method	to	handle	stopping	audio...
	 stopAudio();
});

We	can	then	add	the	logic	for	our	custom	method	to	stop	the	audio,	which	we	call	as	 stopAudio()

//stop	audio	file
function	stopAudio()	{
	 //stop	audio	playback
	 $audio.stop();
	 //release	audio	-	important	for	android	resources...
	 $audio.release();
	 //just	for	testing
	 alert("stop	playing	audio...&	release!");



}

However,	whilst	the	logic	itself	is	fine,	it	still	won't	stop	the	audio	playing.	The	issue	is	the	variable	 $audio ,	which
currently	has	a	restricted	local	scope	to	the	 playAudio() 	method.	For	now,	a	simple	solution	is	to	alter	the	scope	of
the	initial	property	for	 $audio 	itself,	which	we	can	now	set	in	the	initial	 onDeviceReady() 	method.

function	onDeviceReady()	{
	 //set	initial	properties
	 var	$audio;
...
}

We	can	update	the	value	of	this	variable	in	the	 playAudio() 	method,	and	then	stop	it	in	the	 stopAudio() 	method.
We	also	need	to	call	the	 release() 	method	on	the	current	media	object	to	ensure	that	system	resources	are	freed
up.	This	is	particularly	important	for	Android	devices.

Image	-	Cordova	app	-	Plugin	Test	-	stop	audio	playback



Image	-	Cordova	app	-	Plugin	Test	-	stop	audio	playback	2



Add	a	pause	button



We	can	follow	a	similar	pattern	to	add	our	initial	pause	button	to	the	app's	HTML,

<p>Pause	playback...</p>
<input	type="button"	id="pauseAudio"	data-icon="bars"	value="Pause"	/>

Then,	we	can	add	a	basic	listener	for	the	tap	event	on	the	pause	button,

//button	-	pause	audio
$("#pauseAudio").on("tap",	function(e)	{
	 //pause	audio	logic
	 e.preventDefault();
	 //call	custom	method	to	handle	pausing	audio...
	 pauseAudio();
});

and	then	add	our	custom	 pauseAudio() 	method	to	handle	the	pausing	of	the	current	media	object.

//pause	audio	file
function	pauseAudio()	{
	 //pause	audio	playback
		$audio.pause();
}

Image	-	Cordova	app	-	Plugin	Test	-	pause	audio	playback



Image	-	Cordova	app	-	Plugin	Test	-	pause	audio	playback	2



Whilst	this	works,	and	will	pause	the	audio	playback,	it	will	quickly	introduce	errors	into	the	app's	logic.	For	example,



start	playback	of	audio	and	then	pause.	Then	touch	play	again,	and	the	audio	will	restart	from	the	start	of	the
audio	file.	Not	an	ideal	solution	for	pause.
press	pause	once,	then	twice,	and	an	error	will	be	thrown	for	the	call	to	the	 pause() 	method.

So,	we	need	to	monitor	the	state	of	the	audio	track,	and	ensure	that	both	play	and	pause	is	able	to	update	and	monitor
this	state.

Image	-	Cordova	app	-	Plugin	Test	-	pause	audio	playback	3



For	the	current	iteration	of	this	app,	we	can	monitor	this	change	in	the	playback	with	a	simple	property	we	attach	to	the



scope	for	the	 onDeviceReady() 	method.

This	property	will	then	be	available	to	the	play,	pause,	and	stop	methods	within	the	app.

So,	the	first	thing	we'll	do	is	set	our	new	property,

function	onDeviceReady()	{
	 	 //set	initial	properties
	 	 var	$audio;
	 	 var	$audioPosn	=	0;
...
}

We	now	have	two	properties	we	can	monitor	and	update.	The	variable	 $audioPosn 	has	been	set	to	a	default	value
of	0,	which	we	can	check	as	we	start	to	playback	an	audio	file,

//check	current	audio	position
if	($audioPosn	>	1)	{
		$audio.play();
		alert("playback	position:	"	+	$audioPosn	+	"	secs");
}	else	{
	 $audio.play();
	 alert("playback	position:	start...");
}

We	can	also	use	this	property	to	output	the	current	playback	position,	reset	for	cancelling,	and	so	on.

Image	-	Cordova	app	-	Plugin	Test	-	update	playback	1



If	we	now	pause	a	playing	audio	stream,	we	need	to	be	able	to	get	the	current	playback	position	for	the	audio	file,	and
then	update	our	 $audioPosn 	property.	We	can	do	this	in	the	 pauseAudio() 	method	using	the	
getCurrentPosition() 	method,	which	is	available	on	the	 media 	object	itself.



$audio.getCurrentPosition(
		//	success	callback
		function	(position)	{
				if	(position	>	-1)	{
	 	 	 $audioPosn	=	position;
						alert("pause	playback	at	position:	"	+	position	+	"	secs");
				}
		},	//	error	callback
					function	(e)	{
						...
				}
);

In	the	success	callback	for	this	method,	 position 	will	return	a	value	in	seconds.	We	can	use	this	to	set	the	current
value	for	the	property	 $audioPosn ,	which	we	can	use	elsewhere	in	the	app.

Image	-	Cordova	app	-	Plugin	Test	-	update	playback	2



Now	that	we	can	successfully	pause	our	audio	playback,	and	store	the	current	value	for	the	pause	position	in	the
audio	stream,	we	need	to	update	our	audio	playback.

First,	we	need	check	the	current	position	in	the	audio	stream,



//check	current	audio	position
if	($audioPosn	>	1)	{
	 $audio.seekTo($audioPosn*1000);
	 $audio.play();
	 alert("playback	position:	"	+	$audioPosn	+	"	secs");
}	else	{
	 $audio.play();
	 alert("playback	position:	start...");
}

This	is	why	we	updated	the	 playAudio() 	method	to	check	the	value	of	the	 $audioPosn 	property.	We	can	now	use
this	value	to	seek	to	the	current	position	in	the	audio	stream,	using	the	 seekTo() 	method	exposed	by	the	media
object.

However,	because	this	method	expects	a	time	in	milliseconds	we'll	need	to	update	the	value	for	our	 $audioPosn
property.

Now,	when	we	press	the	play	button	after	pausing	the	audio	stream	it	will	restart	at	the	correct	position.

Image	-	Cordova	app	-	Plugin	Test	-	update	playback	3



Update	stop	button

As	a	final	touch	for	now,	at	least	with	the	buttons,	we	need	to	update	the	logic	for	our	stop	button	so	it	resets	the	value
of	the	 $audioPosn 	property	or	the	audio	stream	will	always	restart	at	the	previous	pause	value.



//stop	audio	file
function	stopAudio()	{
		//stop	audio	playback
	 $audio.stop();
	 //reset	$audioPosn
	 $audioPosn	=	0;
	 //release	audio	-	important	for	android	resources...
	 $audio.release();
	 //just	for	testing
	 alert("stop	playing	audio...&	release!");
}

So,	we	can	simply	reset	the	value	of	the	 $audioPosn 	property	to	 0 	for	now.	Then,	when	the	 playAudio() 	method
checks	this	property	it	will	start	the	audio	stream	at	the	start.

Image	-	Cordova	app	-	Plugin	Test	-	update	playback	4



Check	current	playback	position

We've	now	seen	how	we	can	check	the	current	position	of	a	playing	audio	file.



There	are	many	different	options	for	outputting	this	value,	including	appending	its	value	to	an	element	in	the	DOM,
showing	a	dialogue,	and	so	on.

Again,	how	we	use	the	value	of	this	property	is	up	to	us	as	developers,	and	will	naturally	be	informed	by	the
requirements	of	the	app.	It	may	only	be	necessary	to	use	this	value	internally,	to	help	with	the	app's	logic,	or	we	may
need	to	output	this	result	to	the	user.

Further	considerations	for	plugin	usage

A	few	updates	and	modifications	for	a	media	app

update	logic	for	app
checks	for	event	order,	property	values,	&c.

indicate	playback	has	started
without	alerts...

update	state	of	buttons	in	response	to	app	state
highlights,	colour	updates...

inactive	buttons	and	controls	when	not	needed
update	state	of	buttons...

grouping	of	buttons	to	represent	media	player
add	correct	icons,	playback	options...

metadata	for	audio	file
title,	artist,	length	of	track...

image	for	track	playing
thumbnail	for	track,	album...

track	description
notification	for	track	playing
persist	track	data	and	choice	in	cache	for	reload...
...


