
Cordova	-	Guide	-	Extras	&	Options
Dr	Nick	Hayward

A	brief	overview	of	extra	options	and	features	for	Cordova.

Contents

offline	ready	apps
add	International	support
build	and	customisation	-	config.xml
build	and	customisation	-	merge	options
build	options	-	hooks
prepare	for	release

Play	Store
signing

offline	ready	apps

We'll	now	work	our	way	through	a	few	additional	considerations	as	you	prepare	your	app	for	users,	testing,	and
publication.

We'll	start	with	a	consideration	of	offline	support	for	our	mobile	app.

As	noted	before,	a	mobile	app	needs	to	consider	usage	with	limited	or	no	network	connectivity.	This	might	be	due	to
poor	network	reception,	or	an	explicit	act	by	the	user	to	restrict	data	usage.

With	Cordova	based	apps,	we	can,	of	course,	allow	for	many	situations	where	network	access	is	restricted	or
unavailable.	Online	web	apps,	which	need	to	rely	on	local	caches,	or	the	much	maligned	AppCache	API,	Cordova
bundles	the	required	files	as	it	compiles	the	app.

However,	there	are	still	many	considerations	for	effective	offline	usage.	We	need	to	consider	many	disparate	parts	of
our	app	that	will	be	affected	by	offline	usage.	For	example,	it's	not	just	an	issue	with	loss	of	connectivity	to	services,
data,	collaborative	features	&c.	It	is	also	an	issue	with	the	UI	design,	interaction,	and	features.

For	example,	if	a	user	is	able	to	click	a	button,	select	an	option	whilst	online,	what	happens	if	they	are	now	offline?
Naturally,	they	will	be	unable	to	access	the	end	service	for	the	request.	However,	as	designers	and	developers	we
should	be	proactive	in	removing	this	option	whilst	offline.

For	example,	if	a	user	is	able	to	click	a	button,	select	an	option	whilst	online,	what	happens	if	they	are	now	offline?

Naturally,	they	will	be	unable	to	access	the	end	service	for	the	request.	However,	as	designers	and	developers	we
should	be	proactive	in	removing	this	option	whilst	offline.	So,	we	may	simply	remove	this	button	and	option	if	network
connectivity	is	lost,	or	more	commonly	update	the	element's	state	to	 inactive 	or	effectively	ghost-out	the
appearance	and	interaction	of	the	element.

This	act	of	updating	the	state	of	an	element	for	offline	usage	has	a	number	of	benefits.	With	a	disabled	state,	not	only
is	the	visual	rendering	updated,	event	listeners	should	also	become	inactive.	So,	we	remove	any	potential	issues	and
errors	with	the	logic	of	the	app	due	to	the	loss	of	connectivity.

We	should,	of	course,	also	offer	feedback	to	the	user	to	inform	them	why	an	element,	option,	or	interaction	is	no	longer
available.	We	can	simply	inform	them	of	the	state	of	the	network,	for	example.

With	a	Cordova	app,	as	it	loads	we	can	set	a	listener	for	network	related	events.	We	can	then	continue	to	check	and
monitor	the	status	of	the	network	as	the	app	is	running,	and	then	trigger	changes	in	state	as	required	during	the
lifecycle	of	our	app.



So,	our	app	will	be	able	to	respond	accordingly	simply	by	checking	whether	it's	online	or	offline.	Naturally,	we	need	to
monitor	the	state	of	the	app	as	a	user	may	switch	between	states	of	network	coverage	and	usage.

Cordova	provides	the	useful	Network	Information	plugin	to	help	us	monitor	the	state	of	our	app's	network	connection.
This	plugin	has	two	notable	features.	Firstly,	we	can	use	this	plugin	to	monitor	the	type	of	connection	our	device	is
currently	using.	It	will	return	a	number	of	different	possible	types,	including	 unknown ,	 offline ,	or	one	of	the
available	network	options.	These	might	include	WiFi,	4G,	3G	&c.

Secondly,	we	can	then	respond	to	events	within	our	app	for	 offline 	and	 online .	Of	course,	by	simply	listening	to
these	events,	we'll	now	be	able	to	update	and	modify	our	app	correctly	according	to	a	given	state.	We	can	also	use
these	events	to	offer	the	necessary	feedback	to	our	users.

To	use	this	network	functionality	with	an	app,	we'll	need	to	add	the	Network	Information	plugin,

cordova	plugin	add	cordova-plugin-network-information	--save

Once	we've	installed	and	tested	this	plugin,	we	can	then	check	the	standard	 navigator 	object	for	the	connection
type	of	our	device.	This	will	help	us	determine	whether	the	user's	current	connection	is	WiFi,	4G,	&c.	Then,	by
monitoring	this	connection	type	we	can	update	our	app's	UI,	interaction,	and	logic.

So,	we	can	start	by	adding	the	necessary	listeners	for	the	network	state	of	our	app,

document.addEventListener("offline",	offlineState,	false);
document.addEventListener("online",	onlineState,	false);

These	event	listeners	simply	allow	us	to	respond	accordingly	to	a	change	in	the	monitored	status	of	an	app's	network
connection.	As	the	app	loses	or	regains	network	connectivity,	we	can	use	these	listeners	to	maintain	a	correct	state	for
our	app.

We	can	use	these	custom	functions,	 offlineState 	and	 onlineState ,	to	update	our	app's	UI	for	a	disabled	or
enabled	state,	and	then	offer	feedback	to	the	user.

//handle	offline	network	state
function	offlineState()	{
		//handle	offline	network	state
	 console.log("app	is	now	offline");
	 //show	ons	alert	dialog...
	 ons.notification.alert('your	app	is	now	offline...');
}

//handle	online	network	state
function	onlineState()	{
//	Handle	the	online	event
		var	networkState	=	navigator.connection.type;
	 console.log('Connection	type:	'	+	networkState);
		if	(networkState	!==	Connection.NONE)	{
				//use	connection	state	to	update	app,	save	data	&c.
		}
		ons.notification.alert('Connection	type:	'	+	networkState);
}

The	Cordova	docs	for	this	plugin	also	suggest	the	following	useful	function	to	help	quickly	monitor	and	check	our	app's
network	status,

function	checkConnection()	{
		var	networkState	=	navigator.connection.type;
	 console.log('check	connection	requested...');
		var	states	=	{};
		states[Connection.UNKNOWN]		=	'Unknown	connection';
		states[Connection.ETHERNET]	=	'Ethernet	connection';



		states[Connection.WIFI]					=	'WiFi	connection';
		states[Connection.CELL_2G]		=	'Cell	2G	connection';
		states[Connection.CELL_3G]		=	'Cell	3G	connection';
		states[Connection.CELL_4G]		=	'Cell	4G	connection';
		states[Connection.CELL]					=	'Cell	generic	connection';
		states[Connection.NONE]					=	'No	network	connection';

	 console.log('Connection	type:	'	+	states[networkState]);
}

Image	-	Network	Information	-	part	1



Image	-	Network	Information	-	part	2



Image	-	Network	Information	-	part	3



add	International	support

As	we	start	to	consider	publication	and	release	for	a	mobile	app,	we	need	to	remember	that	our	app	will	be	used	by
many	different	people,	in	different	countries	with	varying	standards,	metrics,	timezones,	measurement	systems,	and
so	on.	In	effect,	we	need	to	ensure	that	input	and	output	for	our	app	is	correctly	defined	and	structured	to	meet	such
international	requirements.

So,	we	can	now	consider	and	test	globalisation	for	our	app.	Cordova,	again,	provides	a	very	useful	Globalization
plugin	for	such	requirements.	We	can	add	this	to	our	projects	using	the	standard	CLI	command,

cordova	plugin	add	cordova-plugin-globalization

This	plugin	uses	a	device's	settings	to	determine	and	monitor	a	user's	defined	locale,	language,	and	timezone.	So,
we	might	have	a	user	with	a	defined	locale	of	USA	but	a	language	setting	of	UK	English.	This	means	the	OS	and
supported	apps	will	output	dates,	numbers,	measures	&c.	in	a	USA	compliant	format,	but	render	the	language	itself
using	UK	English.	Certainly	a	strange	hybrid,	but	something	that	the	user	has	specified.	Therefore,	we	need	to	ensure
that	our	app	adheres	to	this	preference.

As	you	might	expect	by	now,	we	can	use	this	plugin	with	the	defined	global	object,

navigator.globalization

once	the	standard	 deviceready 	event	has	returned	successfully.	So,	we	can	start	by	checking	a	user's	defined
language	for	the	current	app,

navigator.globalization.getPreferredLanguage	(
		//set	success	and	error	callbacks...
		function(language)	{
				console.log('language	=	'+language.value);
		},	function()	{



				console.log('error	with	language	check...');
		}
);

We	can	also	check	a	user's	defined	locale,	which	follows	the	same	general	pattern	to	the	language	check.

navigator.globalization.getLocaleName	(
		//set	success	and	error	callbacks...
		function(locale)	{
				console.log('locale	=	'+locale.value);
		},	function()	{
				console.log('error	with	locale	check...');
		}
);

We	can	also	update	and	customise	our	app's	dates	and	times	to	correctly	match	the	specified	locale	settings.	For	this,
we	can	use	the	 dateToString() 	method	with	the	navigator	object,

navigator.globalization.dateToString(
				new	Date(),
				function	(date)	{	alert('date:	'	+	date.value	+	'\n');	},
				function	()	{	alert('Error	getting	dateString\n');	},
				{	formatLength:	'short',	selector:	'date	and	time'	}
);

In	this	example	from	the	Cordova	API	docs,	we	can	see	that	the	date	is	created	using	JavaScript's	 Date()
constructor.	We	can	then	use	it	with	the	 dateToString() 	method	on	the	navigator	object	to	ensure	the	rendered
date	is	formatted	correctly	to	match	the	set	locale.

Image	-	International	Support	-	part	1



Image	-	International	Support	-	part	2



Image	-	International	Support	-	part	3



build	and	customisation	-	config.xml

We've	already	seen	the	 config.xml 	file,	but	there	are	a	few	additional	preferences	that	we	can	consider	in	the
metadata.	We	can	modify	the	values	of	these	preferences	to	help	us	configure	and	setup	our	app	with	greater
precision	and	customisation.

So,	Cordova	uses	this	file	to	help	define	various	aspects	and	structures	within	an	app.	It's	used	as	part	of	the	build
process,	and	to	help	us	defines	the	underlying	metadata	and	settings	for	running	our	initial	app.

In	addition	to	the	standard	metadata	for	author,	description,	app	name,	and	ID,	there	are	also	a	few	additional,	useful
preferences.	These	include	specifying	the	default	start	file	as	the	app	loads,	a	security	setting	for	resource	access,	and
a	minimum	API	for	building	the	app.



When	we	create	a	Cordova	app	using	the	CLI	tool,	the	default	start	file	will	be	specified	as	 index.html .	However,	as
necessary	within	the	structure	of	our	custom	app,	we	can	also	update	this	value	to	a	different	file,

<content	src="custom.html"	/>

Within	a	standard	Cordova	structure,	it's	unlikely	you	would	need	to	update	this	value,	but	at	least	you	know	it's
possible.

We	can	also	update	our	app's	settings	to	define	access	privileges	and	domains	for	remote	resources.	For	example,
any	CSS	stylesheets,	JavaScript	files,	images,	remote	APIs,	and	servers.	These	are	specifically	remote	resources	that
are	not	bundled	with	the	app	itself.

Cordova	refers	to	this	setting	as	a	whitelist.	It's	now	been	moved	to	a	specific	plugin,	which	is	added	by	default	as	we
create	an	app.

The	default	value	for	this	setting	is	global	access,	e.g.

<access	origin="*"	/>

For	many	apps,	this	setting	will	be	fine.

However,	we	may	need	to	restrict	access	due	to	user	input	in	our	app,	remote	loading	of	data,	and	so	on.	In	effect,	we
might	consider	restricting	our	app	to	specific	domains.

We	can	add	as	many	 <access> 	tags	as	necessary	for	our	app,	e.g.

<access	origin="http://www.test.com"	/>
<access	origin="https://www.test.com"	/>

This	allows	our	app	to	access	anything	on	this	domain,	including	secure	and	non-secure	requests.

We	can	also	add	subdomains	relative	to	a	given	domain,	simply	by	prepending	a	wildcard	option	to	a	specified
domain,

<access	origin="http://*.test.com"	/>
<access	origin="https://*.test.com"	/>

So,	if	we	know	that	our	app	requires	access	to	specific	remote	domains,	we	can	update	our	app's	settings	to	ensure
access	is	restricted	correctly.

Beyond	updating	the	initial	default	 config.xml 	setting	file,	we	can	also	add	further	metadata	and	preferences	to	help
customise	our	app.

For	example,	we've	already	seen	how	to	add	custom	icons	and	splashscreens	for	our	app.	In	addition,	we	can	also
add	further	settings	for	plugins,	specific	installed	and	supported	platforms,	general	preferences	for	all	platforms,	or
restrict	to	a	single	platform.

As	an	example,	for	general	preferences	there	are	five	global	options	we	might	consider	for	our	app's	settings.	These
include

BackgroundColor
Android	and	iOS	support	for	a	specific	fixed	background	colour

DisallowOverscroll
Android	and	iOS	support	to	prevent	a	rendered	app	from	moving	off	the	screen

Fullscreen
Android	(but	not	iOS)	support	to	determine	whether	an	app	should	cover	the	whole	screen	or	not
e.g.	useful	for	kiosk	style	apps...



HideKeyboardFromAccessoryBar
iOS	(but	not	Android)	support	for	hiding	an	additional	toolbar	above	a	keyboard

Orientation
Android	(but	not	iOS)	support	for	locking	an	app's	orientation

We	can	add	any	necessary	preferences	as	follows	simply	by	using	the	 <preference> 	element	in	our	 config.xml
file.	For	example,

<preference	name="fullscreen"	value="true"	/>

We	can	add	as	many	preferences	as	necessary	for	our	app's	configuration.	We	can	also	customise	our	preferences
for	a	specific	platform,	for	example	restricting	a	preference	to	just	Android	or	iOS.	For	example,

<platform	name="android">
		<preference	name="DisallowOverscroll"	value="true"	/>
</platform>

build	and	customisation	-	merge	options

For	many	apps	we	build	using	Cordova,	we'll	be	able	to	develop	using	a	single	code	base	with	platform	specific
preferences	and	UI	customisations.	This	is	the	build	pattern	we've	been	using	for	our	test	apps.

However,	we	may	encounter	scenarios	where	we	prefer	to	create	a	distinction	in	the	app's	design	or	functionality.	One
way	to	achieve	this	separation	between	platform	specific	code	is	to	use	a	Cordova	pattern	known	as	merges.

We	need	to	create	a	new	folder	called	 merges 	in	our	app's	root	directory.	This	is	the	root	directory	for	the	app	itself,
and	not	the	 www 	directory.

We	can	use	this	new	 merges 	folder	to	help	us	develop	platform	specific	requirements,	including	stylesheets.	We	can
add	a	sub-directory	within	 merges 	for	each	platform	we	want	to	support	in	our	app.	As	we	build	our	app	using
Cordova's	CLI	tool,	if	there	is	a	 merges 	folder,	it	will	be	checked	for	each	platform.	If	a	required	file	exists,	it	will	then
replace	the	equivalent	file	in	the	app's	 www 	directory.	If	there	is	a	file	in	a	plaform	sub-directory	of	the	 merges 	folder
that	does	not	exist	in	the	 www 	directory,	then	it	will	simply	be	added	as	the	app	is	built.

For	example,	our	app's	updated	structure	will	be	as	follows

config.xml
|--	hooks
|--	merges
				|__	android
				|__	ios
|--	platforms
|--	plugins
|--	www

An	example	usage	might	include	specific	stylesheets	per	platform.

For	example,	in	our	app's	 index.html 	file	we	can	add	a	link	reference	to	a	stylesheet.	The	file	for	this	stylesheet	is
added	as	usual	to	our	app's	 www 	directory,	but	we	can	now	leave	this	file	blank	for	the	overall	project.	We	then	add	a
matching	CSS	file	to	each	platform	directory	in	the	 merges 	folder.	This	CSS	file	will	then	be	added	to	our	platform
specific	app	as	it	is	built	by	Cordova.	For	example,	our	directory	structure	can	be	updated	as	follows

config.xml
|--	hooks
|--	merges
				|__	android



								|__	css
												|__	platform.css
				|__	ios
|--	platforms
|--	plugins
|--	www
				|__	css
								|__	platform.css
				|__	...

This	allows	us	to	add	specific	styling,	layout,	and	design	requirements	for	each	supported	platform	quickly	and	easily.

build	options	-	hooks

We've	been	using	Cordova's	CLI	tool	to	help	create	our	apps,	add	required	platforms	and	plugins,	build	our	apps,	and
so	on.	However,	so	far	we've	been	using	default	options	and	patterns.

With	Hooks,	we	can	customise	the	behaviour	of	Cordova's	CLI	relative	to	a	given	project.	In	effect,	Hooks	are	scripts
that	are	able	to	interact	with	the	CLI	tool	for	a	given	command	and	action.	We	can	often	consider	these	Hooks	in	two
distinct	scenarios,	before	and	after	an	action	is	executed	by	the	CLI	tool.

For	a	standard	Cordova	CLI	command,	we	might	consider	adding	a	hook	before	or	after	that	command	and	action	is
called	and	executed.	Many	uses	of	hooks	include	automation	of	standard	build	options,	tools,	and	commands.	For
example,	we	might	need	to	add	the	same	plugins	for	a	series	of	apps	we're	building	and	testing.	We	can	create	a
hook	that	adds	a	list	of	plugins	after	adding	a	platform	to	a	project.

The	Cordova	CLI	tool	will,	by	default,	check	for	hook	scripts	in	the	 hooks 	directory.	To	add	a	hook,	we	simply	create
a	sub-directory	in	the	 hooks 	directory	with	the	same	name	as	a	defined	hook.	Cordova	will	then	check	this	sub-
directory	for	scripts	to	execute.	It's	also	important	to	note	that	scripts	will	be	executed	in	alphabetical	order	by
filename.

Another	interesting	option	with	hooks	is	that	they	can	be	written	in	any	language	supported	by	the	host	computer.	In
effect,	as	long	as	the	script	can	be	run	from	the	command	line,	it	can	used	with	the	Cordova	CLI	tool.	However,	many
hooks	are	still	written	in	JavaScript,	which	is	then	executed	using	Node.js.

prepare	for	release

As	we	finalise	our	Cordova	app,	we	need	to	consider	how	to	correctly	prepare	and	package	our	application	for
publication	to	one	or	more	of	the	available	app	stores.	However,	each	of	the	major	app	stores	tends	to	require	that	we
follow	a	similar,	prescribed	pattern	for	preparation	and	publication	of	an	app.

To	prepare	our	app	for	publication,	we	can	begin	by	transitioning	from	an	initial	development	version	of	our	app	to	a,
hopefully,	stable	release	version.	This	usually	requires	an	application	that	has	been	signed	by	the	developer	with	a
password.	Effectively,	we	are	defining	ownership	of	the	app,	and	accepting	responsibility	for	its	publication,	contents,
and	so	on.

Next,	of	course,	we	need	to	submit	our	app	to	a	store	for	publication.	In	addition	to	preparing	the	app	itself,	we	will
normally	be	required	to	provide	descriptions	for	the	app	itself,	and	provide	a	minimum	of	screenshots	for	general
usage	and	prominent	features.	In	effect,	we	can	use	this	supplementary	information	as	our	way	of	trying	to	sell	our
app.

prepare	for	release	-	Play	Store

Releasing	an	Android	app	is	considerably	less	involved	than	its	iOS	counterpart.	Within	reason,	developers	can
release	and	publish	a	vast	array	of	application	types.

So,	let's	begin	with	Android	and	publication	of	our	app	on	the	Play	Store.	To	help	us	conceptualise	this	overall
process,	we	may	consider	it	as	a	division	between	preparation	of	the	app,	and	then	publication.



For	the	initial	preparation,	we	begin	by	signing	our	app	with	a	key,	which	we	can	create	from	the	command	line.	Then,
we	can	use	Cordova	build	tools	to	create	a	final,	release	build	of	our	application.

With	a	prepared,	publication	ready	Cordova	app,	we	can	upload	our	app	to	Google's	Play	Store	for	publication.	As
noted,	we'll	need	to	provide	some	additional	supporting	information,	including	a	title	for	our	app,	icons,	description,	and
so	on.	We	can	then	mark	our	app	as	published.

prepare	for	release	-	signing

To	prepare	our	app	for	a	store,	we	need	to	sign	it	using	a	key	store	and	key	prior	to	publication.	The	key	is	the
signature,	which	is	saved	in	the	defined	key	store.

We	need	to	be	particularly	careful	with	this	key,	of	course,	as	it	provides	security	and	authentication	for	the	publication
of	our	app.	Therefore,	take	care	with	the	key	file	itself,	and	the	password.

We	can	sign	our	app	using	a	command	line	tool	provided	by	Java,	 keytool .	An	example	keytool	command	for	our
app	might	be	as	follows,

keytool	-genkey	-v	-keystore	my-app-ks.keystore	-alias	my-app-ks	-keyalg	RSA	-keysize	
2048	-validity	10000

With	this	command,	we	are	creating	both	the	keystore	and	the	required	key	for	our	app.	There	are	a	few	arguments
that	we	need	to	consider	for	this	command,

my-app-ks.keystore 	-	this	is	the	filename	for	the	keystore,	which	can	be	set	to	a	preferred	name	for	your	app.
my-app-ks 	-	this	is	the	name	of	the	alias	for	the	keystore.	Again,	a	developer	can	specify	their	preferred	name,

which	can	be	a	simple,	plain	text	name	for	the	keystore.

After	submitting	this	command,	keytool	will	ask	a	number	of	question,	which	help	setup	the	key	for	your	app.	Simply
answer	these	questions,	and	your	app's	keystore	and	key	will	be	created.

Image	-	Keytool	-	Create	a	Keystore


