
JS	-	Core
Dr	Nick	Hayward

A	brief	introduction	to	some	of	the	core	concepts	for	working	with	JavaScript.

Contents

Intro
Values	and	Types
Objects

objects
arrays

Checking	equality
Functions	and	values
More	conditionals

switch	conditional
ternary	or	conditional	operator

Closures
examples	1	and	2
why	use	closures?
example	3
closures	and	scope	persistence

JS	and	 this
global,	window	object
object	literals
example	-	object	literals
events

JS	best	practices
JS	performance
References

Intro

A	few	of	the	primary,	core	concepts	for	working	with	JavaScript.	Many	of	these	concepts	are	applicable	to	client-side
design,	web-stack	mobile	development,	and	web-stack	desktop	application	development.

Values	and	Types

JS	has	typed	values,	and	not	typed	variables.	To	help	us,	JS	provides	the	following	built-in	types

boolean
null
number
object
string
symbol	(new	in	ES6)
undefined

Another	helping	hand	is	provided	by	JS's	 typeof 	operator,	which	lets	us	easily	examine	a	value	and	return	its	type.



We	are	asking	JS	for	the	type	of	value	currently	stored	in	the	specified	variable.	For	example,

var	a	=	49;
console.log(typeof	a);	//result	is	a	number

So,	as	of	ES6,	there	are	7	possible	return	types	for	JS.	It's	also	useful	to	remember	that	in	JS	variables	do	not	have
types,	they	are	mere	containers	for	the	values.	It's	these	values	that	specify	the	type.

As	a	point	of	interest,	if	we	run	the	following

var	a	=	null;
console.log(typeof	a);	//result	is	object

The	result	is	an	object,	and	not	the	expected	null.	This	is	a	known,	long	standing	bug,	and	one	that	may	never	get
squashed.	Developers	have	often	come	to	rely	on	this	issue,	and	it	can	be	seen	used	in	different	examples.

Objects

Objects,	as	you	might	imagine,	are	particularly	useful	in	JS.	In	essence,	the	object	type	includes	a	compound	value,
which	JS	can	use	to	set	properties,	or	named	locations.	Each	of	these	properties	holds	its	own	value,	and	can	be
defined	as	any	type.	Hence	its	general	flexibility	in	JS	development,	and	its	widespread	usage.

var	objectA	=	{
		a:	49,
		b:	59,
		c:	"Philae"
};

We	can	then	access	these	values	using	either	dot	or	bracket	notation,

//dot	notation
objectA.a;
//bracket	notation
objectA["a"];

Dot	notation	tends	to	be	more	common,	and	is	therefore	often	preferred	for	JS	usage.

Image	-	JS	Object

Arrays



In	JS,	an	array	is	an	object	that	contains	values,	again	of	any	type,	in	numerically	indexed	positions.

So,	we	can	store	a	number,	a	string,	and	the	array	will	start	at	index	position	 0 .	It	will	then	increment	by	1	for	each
new	value.

These	arrays	can	also	have	properties,	for	example	the	automatically	updated	length	property.

var	arrayA	=	[
		49,
		59,
		"Philae"
];
arrayA.length;	//returns	3

Each	value	can	be	retrieved	from	its	applicable	index	position,

		arrayA[2];	//returns	the	string	"Philae"

Due	to	the	nature	of	arrays,	as	special	objects,	we	could	use	them	as	a	catch-all	solution	for	storing	our	values.	We
could	even	add	our	own	named	properties,	thereby	mimicking	the	functionality	of	an	object.	However,	this	is	often
considered	poor	usage,	or	misuse	in	many	respects,	of	the	functionality	of	objects	and	arrays	in	JavaScript.

Therefore,	we	can	use	objects	for	named	properties,	and	arrays	for	values	with	numerically	indexed	positions.

Image	-	JS	Array

Checking	equality

In	JS,	there	are	four	equality	operators,	which	include	two	not	equal	examples.	These	include

== ,	 === ,	 != ,	 !==

The	first	option,	 == ,	checks	for	value	equality,	whilst	allowing	coercion.	The	second	option,	 === ,	will	also	check	for
value	equality	but	without	coercion.	Therefore,	this	second	option	is	also	known	as	strict	equality.	For	example,

var	a	=	49;
var	b	=	"49";

console.log(a	==	b);	//returns	true
console.log(a	===	b);	//returns	false



Therefore,	as	the	rules	imply,	for	the	first	comparison	JS	will	check	the	values,	and	if	necessary	will	try	to	coerce	one
or	both	values	to	a	different	type	until	a	match	occurs.	This	allows	JS	to	then	perform	a	simple	equality	check,	which
results	in	 true .

The	second	check,	however,	is	far	simpler.	As	coercion	is	not	permitted,	a	simple	equality	check	is	performed,	which
results	in	the	obvious	 false 	return.
So,	an	obvious	question	is	which	comparison	operator	should	we	use.	The	following	are	often	suggested	as	useful
rules	of	thumb,

use	 === 	if	it's	possible	either	side	of	the	comparison	could	be	true	or	false
use	 === 	if	either	value	could	be	one	of	the	following	specific	values,

0 ,	 "" ,	 []

otherwise,	it's	safe	to	use	 == .	It	will	also	simplify	code	in	a	JS	application	due	to	the	implicit	coercion.

We	can	also	use	their	not	equal	counterparts,	 ! 	and	 !== .	They	work	is	a	similar	manner	to	the	above.

Checking	inequality

Known	as	relational	comparison,	we	can	use	the	operators,

< ,	 > ,	 <= ,	 >=

to	check	for	inequality.	Such	inequality	operators	tend	to	be	used	to	simply	check	comparable	values	like	numbers,
normally	those	that	have	an	ordinal	quality.	For	example,

49	<	59

However,	we	can	also	use	these	inequality	operators	to	check	strings.	This	comparison	is	based	on	typical
alphabetical	rules,

"hello"	<	"world"

Coercion	also	occurs	with	inequality	operators,	and	it	should	be	noted	that	we	do	not	have	to	deal	with	the	concept	of
strict	inequality.	For	example,

var	a	=	49;
var	b	=	"59";
var	c	=	"69";

a	<	b;	//returns	true
b	<	c;	//returns	true

Again,	if	we	consider	the	above	results	we	can	see	how	JS	follows	a	set	of	prescribed	rules	and	patterns,	which
informs	its	decision	and	outcome.	So,	in	these	examples	for	a	 < 	operator	JS	will	check	whether	both	values	are
strings.	If	true,	then	it	will	perform	a	comparison	based	upon	alphabetical	checks.	If	either	value	is	not	a	string,	it	will
coerce	both	sides	to	numbers	and	perform	the	comparison.

we	can	encounter	an	issue	when	either	value	cannot	be	coerced	into	a	number

var	a	=	49;
var	b	=	"nice";

a	<	b;	//returns	false
a	>	b;	//returns	false
a	==	b;	//returns	false

issue	for	 < 	and	 > 	is	string	is	being	coerced	into	invalid	number	value,	 NaN
== 	coerces	string	to	 NaN 	and	we	get	comparison	between	 49	==	NaN



Functions	and	values

So	far,	we've	seen	variables	acting	as	groups	of	code	and	blocks,	which	act	as	one	of	the	primary	mechanisms	for
scope	within	our	JS	applications.

However,	we	can	also	use	functions	as	values,	effectively	using	them	to	set	values	for	other	variables,	for	example.

var	a;

function	scope()	{
"use	strict";
		 a	=	49;
		return	a;
}

b	=	scope()*2;
console.log(b);

It's	a	useful	and	interesting	aspect	of	the	JS	language,	thereby	allowing	us	to	build	values	from	multiple	layers	and
sources.

More	conditionals

We've	already	briefly	considered	conditional	statements	using	the	 if 	statement,

if	(a	>	b)	{
console.log("a	is	the	best...");
}	else	{
console.log("b	is	the	best...");
}

Switch	statements	in	JS	effectively	follow	the	same	pattern	as	 if 	statements,	but	they	are	designed	to	allow	us	to
check	for	multiple	values	in	a	more	succinct	manner.	These	statements	enable	us	to	check	and	evaluate	a	given
expression,	and	then	attempt	to	match	a	required	value	against	an	available	 case .

switch	conditional

The	addition	of	 break 	is	important	to	ensure	that	only	a	matched	case	is	executed,	and	then	the	application	breaks
from	the	switch	statement.	If	not,	execution	after	that	case	will	continue.	This	is	commonly	known	as	fall	through	in
programming.	Be	aware,	however,	that	this	may	be	an	intentional	feature	of	your	code	design	as	well.	For	example,
we	may	wish	to	allow	a	match	against	multiple	possible	cases,	therefore	a	premature	break	is	not	required	within	the
code.

For	example,

var	a	=	4;

switch	(a)	{
case	3:
		//par	3
		console.log("par	3");
		break;
case	4:
		//par	4
		console.log("par	4");
		break;
case	5:
		//par	5
		console.log("par	5");
		break;
case	59:



		//dream	score
		console.log("record");
		break;
default:
		console.log("more	practice");
}

ternary	or	conditional	operator

As	a	final	point,	there	is	also	a	more	concise	way	to	write	our	conditional	statements	using	what	is	known	as	the
ternary	or	conditional	operator.	It's	best	to	consider	this	operator	as	a	more	concise	form	of	the	standard	
if...else 	statement.	For	example,

var	a	=	59;
var	b	=	(a	>	59)	?	"high"	:	"low";

This	is	equivalent	to	the	following	standard	 if...else 	statement

var	a	=	59;

if	(a	>	59)	{
		var	b	=	"high";
}	else	{
		var	b	=	"low";
}

Closures

Closures	are	a	particularly	important	and	useful	aspect	of	JavaScript.	Once	more,	we're	dealing	with	variables	and
scope,	but	this	time	we're	considering	continued,	broader	access	to	ongoing	variables	via	a	function's	scope.

In	effect,	we	can	think	of	closures	as	a	useful	construct	to	allow	us	to	access	a	function's	scope	even	after	it	has
finished	executing.	This	can	give	us	something	similar	to	a	private	variable,	which	we	can	then	access	through	another
variable	using	the	relative	scopes	of	outer	and	inner.	The	inherent	benefit	is	that	we	are	able	to	repeatedly	access
internal	variables	that	would	normally	cease	to	exist	once	a	function	had	executed.

closures	-	example	1

Our	first	example	of	explicitly	using	closures,

//value	in	global	scope
var	outerVal	=	"test1";

//declare	function	in	global	scope
function	outerFn()	{
		//check	&	output	result...
		console.log(outerVal	===	"test1"	?	"test	is	visible..."	:	"test	not	visible...");
}

//execute	function
outerFn();

Image	-	closures	-	global	scope



closures	-	example	2

Second	example	of	using	closures,

"use	strict";

function	addTitle(a)	{
		var	title	=	"hello	";
		function	updateTitle()	{
				var	newTitle	=	title+a;
				return	newTitle;
		}
				return	updateTitle;
}

var	buildTitle	=	addTitle("world");
console.log(buildTitle());

So,	as	we	can	see	in	this	code	example,	the	new	function	 buildTitle 	has	become	a	 closure .	In	effect,	
buildTitle 	is	now	a	special	type	of	object	with	both	a	function	and	the	original	function	environment.	The	key	here

is	that	this	function	environment	includes	any	local	variables	within	the	same	scope.

why	use	closures?

We	use	closures	a	lot	in	JavaScript,	they	are	a	real	driving	force	behind	Node.js,	jQuery,	and	many	other	JS	libraries.
Closures	can	help	reduce	the	sheer	amount,	and	complexity,	of	code	necessary	to	add	advanced	features	to	an	app.
However,	they	also	help	us	add	features	to	apps	that	would	otherwise	be	difficult,	or	impossible,	to	implement	without
closures.

e.g.	any	task	using	callbacks,	including	event	handlers,	would	be	considerably	more	difficult	without	closures.	Others,
including	support	for	private	object	variables,	would	effectively	be	impossible.

In	essence,	a	closure	allows	us	to	work	with	a	function	that	has	been	defined	within	another	scope,	and	yet	still	has
access	to	all	the	variables	within	the	defined	outer	scope.	This	allows	basic	encapsulated	data,	in	effect	giving	us	a
way	to	store	data	in	a	separate	scope,	and	then	share	it	where	needed.

We	can	also	use	this	same	approach	to	repeatedly	make	new	functions.

function	count(a)	{
return	function(b)	{
						return	a	+	b;
		}
}

var	add1	=	count(1);
var	add5	=	count(5);
var	add10	=	count(10);

console.log(add1(8));
console.log(add5(8));
console.log(add10(8));

using	one	function	to	create	multiple	other	functions,	 add1 ,	 add5 ,	 add10 ,	and	so	on.

closures	-	example	3

//variables	in	global	scope
var	outerVal	=	"test2";
var	laterVal;

function	outerFn()	{



		//inner	scope	variable	declared	with	value	-	scope	limited	to	function
		var	innerVal	=	"test2inner";
		//inner	function	-	can	access	scope	from	parent	function	&	variable	innerVal
		function	innerFn()	{
				console.log(outerVal	===	"test2"	?	"test2	is	visible"	:	"test2	not	visible");
				console.log(innerVal	===	"test2inner"	?	"test2inner	is	visible"	:	"test2inner	is	
not	visible");
		}
		//inner	function	now	added	to	global	scope	-	now	able	to	access	elsewhere	&	call	
later
		laterVal	=	innerFn;
}
//invokes	outerFn,	innerFn	is	created,	and	its	reference	assigned	to	laterVal
outerFn();
//innerFn	is	invoked	using	laterVal	-	can't	access	innerFn	directly...
laterVal();

Image	-	closures	-	inner	scope

closures	and	scope	persistence

So,	how	is	the	 innerVal 	variable	still	available	when	we	execute	the	inner	function.	In	particular,	if	we	consider	that
the	scope	in	which	it	was	created	has	gone.

This	is	why	closures	are	such	an	important	and	useful	concept	in	JavaScript.	It	is	this	use	of	closures	that	creates	a
sense	of	persistence	in	the	scope.

This	scope	persistence,	and	delayed	access	to	functions	and	variables,	is	why	closures	are	so	useful	in	JavaScript.
The	closure	creates	a	safe	wrapper	around	the	function,	and	any	variables	that	are	in	scope	as	a	function	is	defined.
In	effect,	the	closure	ensures	that	the	function	has	everything	it	needs	to	execute	correctly.

This	wrapper,	including	the	function	and	variables,	then	persists	as	long	as	the	function	exists.

However,	there	may	also	be	a	cost	to	memory	and	performance	if	we	construct	all	of	our	app	using	this	pattern.	There
is	no	specifically	defined	closure	object,	for	example,	and	each	function	comes	with	its	own	entourage,	so	to	speak.
These	associated	variables	and	values,	for	example,	do	not	come	free.	There	will	be	some	memory	usage,	so	you'll
need	to	check	if	this	is	an	issue	with	your	app	or	not.

JS	and	 this

A	commonly	misunderstood	feature	of	JavaScript	is	appropriate	and,	in	many	examples,	correct	usage	of	the	keyword	
this .

Unlike	many	other	programming	and	scripting	languages,	the	value	of	 this 	is	not	inherently	linked	with	the	function
itself.	Instead,	it	is	a	response	to	how	the	function	is	called	that	determines	the	value	of	 this .

Therefore,	the	value	itself	can	be	dynamic,	simply	based	upon	how	the	function	is	called	programmatically.	If	a
function	contains	 this ,	its	reference	will	usually	point	to	an	 object .

So,	let's	take	a	quick	look	at	some	of	the	initial	ways	we	can	use,	and	update,	 this .

There	are	a	number	of	ways	that	the	value	of	 this 	can	change,	depending	upon	the	originating	context.	When	we



call	functions,	the	way	we	call	them	will	inherently	affect	the	resultant	value	of	 this .

global,	window	object

When	we	call	a	function,	we	can	bind	the	 this 	value	to	the	 window 	object.	The	resultant	object	refers	to	the	root,	in
essence	the	 global 	scope.	So,	if	we	use	 console.log() 	to	output	the	value	of	 this ,	we	should	expect	the
resultant	value	to	be	our	current	 window 	object.

function	test1()	{
		console.log(this);
}

test1();

NB:	the	above	will	return	a	value	of	 undefined 	in	strict	mode.

JSFiddle	-	this	-	window

We	can	also	check	for	the	value	of	 this 	relative	to	the	global	object,

var	a	=	49;

function	test1()	{
		 console.log(this.a);
}

test1();

JSFiddle	-	this	-	global

object	literals

Within	an	object	literal,	the	value	of	 this ,	thankfully,	will	always	refer	to	its	own	object.

var	object1	=	{
	 method:	test1
};

function	test1()	{
	 console.log(this);
}

object1.method();

JSFiddle	-	this	-	literal
JSFiddle	-	this	-	literal	2

So,	the	return	value	for	 this 	will	be	the	object	itself.	In	the	above	simple	example,	we	get	the	returned	object	with	a
property	and	value	for	the	defined	function.	If	the	object	contains	other	properties	and	values,	these	will	be	returned
and	available	as	well.

example	-	object	literals

var	sites	=	{};
sites.name	=	"philae";

sites.titleOutput	=	function()	{
		console.log("Egyptian	temples...");
};

http://jsfiddle.net/ancientlives/o6d77tye/
http://jsfiddle.net/ancientlives/2r4grha1/
http://jsfiddle.net/ancientlives/d93bkbq8/
http://jsfiddle.net/ancientlives/kt3g4wou/


sites.objectOutput	=	function()	{
		console.log(this);
};

console.log(sites.name);
sites.objectOutput();
sites.titleOutput();

We	can	see	example	output	for	this	code	in	the	following	image,

Image	-	Object	Literals	console	output

events

For	events,	the	value	of	 this 	points	to	the	owner	of	the	bound	event.	For	example,	if	we	bind	the	following	event

<div	id="test">click	to	test...</div>

var	testDiv	=	document.getElementById('test');

function	output()	{
		console.log(this);
};

testDiv.addEventListener('click',	output,	false);

JSFiddle	-	this	-	events

When	this	element	is	clicked,	the	value	of	 this 	becomes	this	element.

JS	best	practices

As	an	end	to	our	initial	foray	into	JavaScript,	there	are	a	few	guidelines	for	best	practices	that	are	worth	considering.

variables

There	are	a	couple	of	useful	guidelines	for	using	both	global	and	local	variables.

Where	at	all	possible,	limit	use	of	global	variables	in	JavaScript.	In	JS,	they	are	easy	to	override,	can	lead	to
unexpected	errors	and	issues,	and	should	be	replaced	with	appropriate	local	variables	or	closures.

Local	variables	should	always	be	declared	with	the	keyword	 var 	to	avoid	the	automatic	global	variable	issue.

It's	also	useful	to	initialise	variables	as	they	are	declared.	This	helps	create	cleaner	code,	single	declaration	and
initialisation,	and	avoids	unnecessary	undefined	values.

declarations

http://jsfiddle.net/ancientlives/e5ekrk1w/


As	an	act	of	good	practice,	and	to	avoid	unnecessary	or	unwanted	hoisting,	add	all	required	declarations	at	the	top	of
the	appropriate	script	or	file.	Whilst	providing	cleaner,	more	legible	code,	it	also	helps	to	avoid	unnecessary	global
variables	and	the	unwanted	re-declarations.

types	and	objects

Avoid	declaring	numbers,	strings,	or	booleans	as	objects.	These	should	be	treated	more	correctly	as	primitive	values,
which	helps	increase	the	performance	of	our	code,	and	decrease	the	possibility	for	issues	and	bugs.

type	conversions	and	coercion

Due	to	the	weakly	typed	nature	of	JS,	it's	important	to	avoid	accidentally	converting	one	type	to	another.	For	example,
converting	a	number	to	a	string	or	mixing	types	to	create	a	NaN	(Not	a	Number).	Also,	we	can	often	get	a	returned
value	set	to	NaN	instead	of	generating	an	error.	For	example,	if	we	try	to	subtract	one	string	from	another.	However,	if
we	try	the	following

"15"	-	10

JS	will	convert	the	first	string	to	a	number,	and	then	perform	the	subtraction.

comparison

With	comparisons,	it	is	better	to	try	and	work	with	 === 	(equal	value	and	equal	type)	instead	of	 == 	(equal	to).	As
we've	seen,	the	main	issue	that	 == 	tries	to	coerce	a	matching	type	before	comparison.	The	second	comparison,	
=== 	forces	comparison	of	values	and	type.

defaults

Where	parameters	are	required	by	a	function,	a	function	call	with	a	missing	argument	can	lead	to	it	being	set	as
undefined.	Therefore,	it	is	good	coding	practice	to	at	least	assign	default	values	to	arguments	to	help	prevent	issues
and	bugs.

switches

As	already	mentioned,	fall-through	in	switch	statement	can	be	useful	but	you	still	need	to	consider	a	default	for	the
conditional	statement.	Therefore,	ensure	you	always	set	a	 default 	to	end	a	switch	statement.

JS	performance

Finally,	a	few	simple	steps	to	help	improve	general	code	performance	in	JavaScript.

loops

Loops	are	a	common	feature	of	JavaScript	programming,	and	it	makes	sense	to	limit	the	number	of	calculations,
executions,	and	statements	performed	per	iteration	of	a	loop.	Therefore,	it's	useful	to	check	loop	statements	for
assignments	and	statements	that	only	need	to	be	checked	or	executed	once,	rather	than	each	time	a	loop	iterates.
The	following	 for 	loop	is	a	standard	example	of	this	type	of	quick	optimisation

//	bad
for	(i	=	0;	i	<	arr.length;	i++)	{
...
}
//	good
l	=	arr.length;
for	(i	=	0;	i	<	l;	i++)	{
...
}



source	-	W3

DOM	access

Working	with	the	DOM	repetitively	can	be	slow,	and	resource	intensive.	Therefore,	either	try	to	limit	the	number	of
times	your	code	needs	to	access	the	DOM,	or	simply	access	once	and	then	use	as	a	local	variable.

var	testDiv	=	document.getElementById('test');
testDiv.innerHTML	=	"test...";

JavaScript	loading

As	alluded	to	earlier,	we	do	not	always	need	to	place	our	JS	files	in	the	 <head> 	element.	By	adding	our	JS	files	to	the
end	of	the	page's	body,	we	allow	the	browser	to	load	the	page	first,	and	importantly	the	DOM	itself.

Traditionally,	whilst	a	browser	was	downloading	a	script,	it	would	not	start	any	other	downloads.	This	might	also	affect
parsing	and	rendering	of	the	page	itself,	thereby	creating	a	delay	in	the	overall	page	for	the	user.

However,	whilst	this	modification	in	practice	has	now	started	to	filter	into	most	web	app	development,	it	is	still	not
practical	for	all	JS	development.	For	example,	if	we	start	building	desktop	apps,	and	mobile	cross-platform	apps	we
cannot	always	implement	this	practice	in	our	HTML.

References

MDN
MDN	-	JS
MDN	-	JS	Const
MDN	-	JS	Data	Types	and	Data	Structures
MDN	-	JS	Grammar	and	Types
MDN	-	JS	Objects

W3	-	JS	Object
W3	-	JS	Performance

http://www.w3schools.com/js/js_performance.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/js_objects.asp
http://www.w3schools.com/js/js_performance.asp

