
CSS Grid Layout introduces a two-dimensional grid system to CSS. Grids can be used to
layout major page areas or small user interface elements. This article introduces the CSS
Grid Layout and the new terminology that is part of the CSS Grid Layout Level 1
specification. The features shown in this overview will be then explained in greater detail
in the rest of this guide.

A grid is an intersecting set of horizontal and vertical lines – one set defining columns and
the other rows. Elements can be placed onto the grid, respecting these column and row
lines. CSS grid layout has the following features:

Fixed and flexible track sizes

You can create a grid with fixed track sizes – using pixels for example. This sets the grid to
the specified pixel which fits to the layout you desire. You can also create a grid using
flexible sizes with percentages or with the new fr unit designed for this purpose.

Item placement

You can place items into a precise location on the grid using line numbers, names or by
targeting an area of the grid. Grid also contains an algorithm to control the placement of
items not given an explicit position on the grid.

Creation of additional tracks to hold content

You can define an explicit grid with grid layout but the specification also deals with the
content added outside of a declared grid, which adds additional rows and columns when
needed. Features such as adding “as many columns that will fit into a container” are
included.

Alignment control

Grid contains alignment features so that we can control how the items align once placed
into a grid area, and how the entire grid is aligned.

Control of overlapping content

More than one item can be placed into a grid cell or area, they can partially overlap each
other. This layering may then be controlled with z-index property.

Grid is a powerful specification and when combined with other parts of CSS such as
flexbox, can help you to create layouts that were previously impossible to build in CSS. It
all starts by creating a grid in your grid container.

What is a grid?

The Grid container

Basic concepts of grid layout

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout

We create a grid container by declaring display: grid or display: inline-grid on
an element. As soon as we do this all direct children of that element will become grid items.

In this example, I have a containing div with a class of wrapper, inside are five child
elements.

I make the .wrapper a grid container.

One

Two

Three

Four

Five

All the direct children are now grid items. In a web browser, you won’t see any difference
to how these items are displayed before turning them into a grid, as grid has created a
single column grid for the items. At this point, you may find it useful to work in Firefox
Developer Edition, which has the Grid Inspector available as part of the Developer Tools. If
you view this example in Firefox and inspect the grid, you will see a small icon next to the
value grid . Click this and then the grid on this element will be overlaid in the browser
window.

<div class="wrapper">
 <div>One</div>
 <div>Two</div>
 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

1
2
3
4
5
6
7

.wrapper {
 display: grid;
}

1
2
3

https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector/How_to/Examine_grid_layouts

As you learn and then work with the CSS Grid Layout this tool will give you a better idea of
what is happening with your grids visually.

If we want to start making this more grid-like we need to add column tracks.

We define rows and columns on our grid with the grid-template-columns and grid-
template-rows properties. These define grid tracks. A grid track is the space between
any two lines on the grid. In the below image you can see a track highlighted – this is
the first row track in our grid.

I can add to our earlier example by adding the grid-template-columns property, then
defining the size of the column tracks.

I have now created a grid with three 200-pixel-wide column tracks. The child items will be
laid out on this grid one in each grid cell.

Grid Tracks

<div class="wrapper">
 <div>One</div>
 <div>Two</div>

1
2
3

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-rows

One Two Three

Four Five

The fr Unit

Tracks can be defined using any length unit. Grid also introduces an additional length unit
to help us create flexible grid tracks. The new fr unit represents a fraction of the
available space in the grid container. The next grid definition would create three equal
width tracks that grow and shrink according to the available space.

One Two Three

Four Five

In this next example, we create a definition with a 2fr track then two 1fr tracks. The
available space is split into four. Two parts are given to the first track and one part each to
the next two tracks.

 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

4
5
6
7

.wrapper {
 display: grid;
 grid-template-columns: 200px 200px 200px;
}

1
2
3
4

<div class="wrapper">
 <div>One</div>
 <div>Two</div>
 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

1
2
3
4
5
6
7

.wrapper {
 display: grid;
 grid-template-columns: 1fr 1fr 1fr;
}

1
2
3
4

.wrapper {
 display: grid;
 grid-template-columns: 2fr 1fr 1fr;
}

1
2
3
4

In this final example, we mix absolute sized tracks with fraction units. The first track is 500
pixels, so the fixed width is taken away from the available space. The remaining space is
divided into three and assigned in proportion to the two flexible tracks.

Track listings with repeat() notation

Large grids with many tracks can use the repeat() notation, to repeat all or a section of
the track listing. For example the grid definition:

Can also be written as:

Repeat notation can be used for a part of the track listing. In this next example I have
created a grid with an initial 20-pixel track, then a repeating section of 6 1fr tracks then a
final 20-pixel track.

Repeat notation takes the track listing, and uses it to create a repeating pattern of tracks.
In this next example, my grid will consist of 10 tracks, a 1fr track, and then followed by a
2fr track. This pattern will be repeated five times.

The implicit and explicit grid

When creating our example grid we defined our column tracks with the grid-template-
columns property, but in addition let the grid create rows it needed for any other
content. These rows are created in the implicit grid. The explicit grid consists of the rows
and columns you define with grid-template-columns and grid-template-rows . If
you place something outside of that defined grid, or due to the amount of content more
grid tracks are needed, then the grid creates rows and columns in the implicit grid. These
tracks will be auto-sized by default, resulting in their size being based on the content that
is inside them.

You can also define a set size for tracks created in the implicit grid with the grid-auto-
rows and grid-auto-columns properties.

.wrapper {
 display: grid;
 grid-template-columns: 500px 1fr 2fr;
}

1
2
3
4

.wrapper {
 display: grid;
 grid-template-columns: 1fr 1fr 1fr;
}

1
2
3
4

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
}

1
2
3
4

.wrapper {
 display: grid;
 grid-template-columns: 20px repeat(6, 1fr) 20px;
}

1
2
3
4

.wrapper {
 display: grid;
 grid-template-columns: repeat(5, 1fr 2fr);
}

1
2
3
4

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-rows
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-columns

In the below example we use grid-auto-rows to ensure that tracks created in the
implicit grid are 200 pixels tall.

One Two Three

Four Five

Track sizing and minmax()

When setting up an explicit grid or defining the sizing for automatically created rows or
columns we may want to give tracks a minimum size, but also ensure they expand to fit
any content that is added. For example, I may want my rows to never collapse smaller
than 100 pixels, but if my content stretches to 300 pixels in height, then I would like the
row to stretch to that height.

Grid has a solution for this with the minmax() function. In this next example I am using
minmax() in the value of grid-auto-rows . This means automatically created rows will
be a minimum of 100 pixels tall, and a maximum of auto . Using auto means that the
size will look at the content size and will stretch to give space for the tallest item in a
cell, in this row.

<div class="wrapper">
 <div>One</div>
 <div>Two</div>
 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

1
2
3
4
5
6
7

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-auto-rows: 200px;
}

1
2
3
4
5

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-auto-rows: minmax(100px, auto);
}

1
2
3
4
5

https://developer.mozilla.org/en-US/docs/Web/CSS/minmax
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows

One Two

I have some more content
in.

This makes me taller than
100 pixels.

Three

Four Five

It should be noted that when we define a grid we define the grid tracks, not the lines. Grid
then gives us numbered lines to use when positioning items. In our three column, two
row grid we have four column lines.

<div class="wrapper">
 <div>One</div>
 <div>Two
 <p>I have some more content in.</p>
 <p>This makes me taller than 100 pixels.</p>
 </div>
 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

1
2
3
4
5
6
7
8
9
10

Grid Lines

Lines are numbered according to the writing mode of the document. In a left-to-right
language, line 1 is on the left-hand side of the grid. In a right-to-left language, it is on the
right-hand side of the grid. Lines can also be named, and we will look at how to do this in
a later guide in this series.

Positioning items against lines

We will be exploring line based placement in full detail in a later article. The following
example demonstrates doing this in a simple way. When placing an item, we target the
line – rather than the track.

In the following example I am placing the first two items on our three column track grid,
using the grid-column-start , grid-column-end , grid-row-start and grid-row-
end properties. Working from left to right, the first item is placed against column line 1,
and spans to column line 4, which in our case is the far-right line on the grid. It begins at
row line 1 and ends at row line 3, therefore spanning two row tracks.

The second item starts on grid column line 1, and spans one track. This is the default so I
do not need to specify the end line. It also spans two row tracks from row line 3 to row
line 5. The other items will place themselves into empty spaces on the grid.

<div class="wrapper">
 <div class="box1">One</div>
 <div class="box2">Two</div>
 <div class="box3">Three</div>
 <div class="box4">Four</div>
 <div class="box5">Five</div>
</div>

1
2
3
4
5
6
7

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-auto-rows: 100px;
}

.box1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
}

.box2 {
 grid-column-start: 1;
 grid-row-start: 3;
 grid-row-end: 5;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column-start
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column-end
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row-start
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row-end

One

Two Three Four

Five

Don't forget that you can use the Grid Inspector in Firefox Developer Tools to see how the
items are positioned against the lines of the grid.

A grid cell is the smallest unit on a grid. Conceptually it is like a table cell. As we saw in our
earlier examples, once a grid is defined as a parent the child items will lay themselves
out in one cell each of the defined grid. In the below image, I have highlighted the first cell
of the grid.

Items can span one or more cells both by row or by column, and this creates a grid area.
Grid areas must be rectangular – it isn’t possible to create an L-shaped area for example.
The highlighted grid area spans two row and two column tracks.

Grid Cells

Grid Areas

https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector/How_to/Examine_grid_layouts

Gutters or alleys between grid cells can be created using the grid-column-gap and
grid-row-gap properties, or the shorthand grid-gap . In the below example, I am
creating a 10-pixel gap between columns and a 1em gap between rows.

One Two Three

Four Five

Any space used by gaps will be accounted for before space is assigned to the flexible
length fr tracks, and gaps act for sizing purposes like a regular grid track, however you
cannot place anything into a gap. In terms of line-based positioning, the gap acts like a fat
line.

A grid item can become a grid container. In the following example, I have the three-
column grid that I created earlier, with our two positioned items. In this case the first item
has some sub-items. As these items are not direct children of the grid they do not
participate in grid layout and so display in a normal document flow.

Gutters

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-column-gap: 10px;
 grid-row-gap: 1em;
}

1
2
3
4
5
6

<div class="wrapper">
 <div>One</div>
 <div>Two</div>
 <div>Three</div>
 <div>Four</div>
 <div>Five</div>
</div>

1
2
3
4
5
6
7

Nesting grids

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column-gap
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row-gap
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-gap

If I set box1 to display: grid I can give it a track definition and it too will become a
grid. The items then lay out on this new grid.

a b c

Two

Three

Four

Five

In this case the nested grid has no relationship to the parent. As you can see in the
example it has not inherited the grid-gap of the parent and the lines in the nested grid

<div class="wrapper">
 <div class="box box1">
 <div class="nested">a</div>
 <div class="nested">b</div>
 <div class="nested">c</div>
 </div>
 <div class="box box2">Two</div>
 <div class="box box3">Three</div>
 <div class="box box4">Four</div>
 <div class="box box5">Five</div>
</div>

1
2
3
4
5
6
7
8
9
10
11

.box1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
 display: grid;
 grid-template-columns: repeat(3, 1fr);
}

1
2
3
4
5
6
7
8

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-gap

do not align to the lines in the parent grid.

Subgrid

In the level 1 grid specification there is a feature called subgrid which would let us create
nested grids that use the track definition of the parent grid.

Subgrids are not yet implemented in any browsers, and the specification is

subject to change.

In the current specification, we would edit the above nested grid example to use
display: subgrid rather than display: grid , then remove the track definition. The
nested grid will use the parent grid tracks to layout items.

It should be noted that the nested grid is in both dimensions—rows and columns. There is
no concept of the implicit grid working with subgrids. This means you need to ensure that
the parent grid has enough row and column tracks for all the subitems.

Grid items can occupy the same cell. If we return to our example with items positioned by
line number, we can change this to make two items overlap.

.box1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
 display: subgrid;
}

1
2
3
4
5
6
7

Layering items with z-index

<div class="wrapper">
 <div class="box box1">One</div>
 <div class="box box2">Two</div>
 <div class="box box3">Three</div>
 <div class="box box4">Four</div>
 <div class="box box5">Five</div>
</div>

1
2
3
4
5
6
7

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-auto-rows: 100px;
}

.box1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
}

.box2 {
 grid-column-start: 1;
 grid-row-start: 2;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

One

Two

Three Four

Five

The item box2 is now overlapping box1 , it displays on top as it comes later in the source
order.

Controlling the order

We can control the order in which items stack up by using the z-index property - just
like positioned items. If we give box2 a lower z-index than box1 it will display below
box1 in the stack.

 grid-row-end: 4;
}

16
17
18

.wrapper {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 grid-auto-rows: 100px;
}

.box1 {
 grid-column-start: 1;
 grid-column-end: 4;
 grid-row-start: 1;
 grid-row-end: 3;
 z-index: 2;
}

.box2 {
 grid-column-start: 1;
 grid-row-start: 2;
 grid-row-end: 4;
 z-index: 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Three Four

Five

Two

One

In this article we have had a very quick look through the Grid Layout Specification. Have a
play with the code examples, and then move onto the next part of this guide where we
will really start to dig into the detail of CSS Grid Layout.

Next Steps

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Relationship_of_Grid_Layout

