
Notes - Build First Development

Dr Nick Hayward

A brief introduction to build first development.

Contents

Intro
Build processes

build phase
deployment phase

Tasks and workflows
development flow
release flow
deployment flow

App complexity and design
modularity
design
testing

Sample tools
linters
basic lint usage

Intro

Build first development encourages a reusable build process, whilst similarly promoting abstracted, clean app
design.

Benefits of this approach will often include the following

automated processes with a reduction in human interaction - this should reduce errors in the build
automated repetitive tasks - increases speed, productivity...
scalable, modular app design
improved testing and maintenance options by reducing overall complexity
releases that conform to testing, best practices...
code deployment following testing, debugging...

We commonly use three stages to an app's development with build first. These include

Build process
compile and test an app using automated process
aimed at continuous development or tuned for specific performance requirements

Design
design and development of code, logic, UI &c.

Deployment & Environment
automation of release process and configuration of different hosted environments

deploy changes to a hosted environment, service...



environment config defines environment and services, e.g. database interaction...

So, we can already discern two primary components to build first development. For example,

processes surrounding the project - e.g. building and deploying an app
design and quality of the app's code, UI &c.

Each of the above relies on the other to achieve the required iterative design and development of an app.

Build processes

A build process is commonly an automated approach to repetitive tasks for design, development, and
management of an app.

For example, we might consider a process for

dependency installation and management
compiling of necessary app code
testing, including standard unit tests
...

Another common requirement is to ensure we are able to perform such processes in as few steps as possible,
and commonly in a single step. This is often known simply as a one-step build.

A developer &c. should also be able to execute this one-step build as many times as necessary, and expect the
same pattern of outcome. This is commonly known as idempotence. In effect, regardless of the frequency of
exection, the result will be the same.

build phase

Inherent to the build phase is a consideration of either development or release.

For example, we might build an app towards an initial release. This will require an ability to test and debug the
app at regular intervals.

Then, we may build the app ready for release itself.

However, for many apps, we simply employ a process known as continuous development.

As such, this will not concern the release distribution of the app.

So, we may often consider build as follows

code for the app
debug & release distributions
app built ready for deployment

The debug distribution may commonly include the following tasks,

compilation, testing, watching

Whilst a release distribution may include the following tasks,



compilation & testing
optimisation & release notes

deployment phase

After a suitable release distribution has been built, the deployment phase may then prepare and deploy this
distribution.

The deployment should maintain fidelity with environment specific config used during the build phase. For
example, secrets, keys, database connectors &c.

Tasks and workflows

Tasks should follow a clearly defined set of steps, such as lint, optimise, build &c., which produce a specific goal.

i.e. action -> task -> goal

This series of steps is commonly referred to as a workflow.

However, a set of tasks may be interchangeable to produce various required workflows. So, a given task may be
optional for a given workflow.

e.g. it may not be necessary to optimise images as part of a development workflow, but crucial for release.

This use of workflows creates a separation of concerns across build and deployment flows, for example.

development flow

Productivity and monitoring changes are the key concerns for a development workflow.

This flow is commonly expected to produce a built app, although it may be focused on continuous development.

release flow

In contrast to development, productivity and monitoring is not a key focus for release. It may, in fact, become a
barrier to a quick, effective build for release if persisted for this workflow.

Therefore, this workflow is primarily concerned with optimising performance, and ensuring a well-tested app.

So, we may modify the development workflow to focus on optimisation, thereby reducing the byte size of the
app, its code, and any required assets.

deployment flow

The deployment flow does not build the app. It should reuse the build distribution, which is customarily produced
in the release workflow. For example, the built app output from the expected release workflow.

This workflow will then deploy this build to a hosting environment.

So, deploying the app should be separate from the build and release workflows.



The inherent benefit to this separation of workflows is the simple ability to build and deploy an app quickly and
efficiently.

App complexity and design

Complexity in app design and structure may be considered relative to modular patterns, dependency
management, async flow control, design patterns, and so on.

For many apps we develop, we may consider the following

modularity and components
design - e.g. MVC, async operations...
testing options and practices

For the build process, defining a modular app architecture is important for maintenance of the underlying code.
We may then augment this architecture by defining automated processes with continuous development,
integration, and deployment.

modularity

A modular approach to app design helps developers define components for required logic, functionality &c. Such
components may then be structured as modules for re-use.

Each module should include concise functions, providing a single purpose to the module.

Modules may include external or local sources, including many third party options using package managers.
Such package managers help abstact version control and dependencies for a selected module.

A simple benefit of modular design is reference to dependencies in the code, instead of the global namespace.
This helps improve self-containment of the module.

design

Design of an app is also helped by a clear identification of components and usage. Such orthogonal design
helps with modular structures, and separation of concerns. It also has a complementary benefit for testing and
further development.

For example, we might define a multi-tiered approach to an app's design. This may isolate the UI interface from
the data and the business logic, each layer providing focused, specific support to the app's design.

testing

Testing is commonly defined at multiple stages of the app's design and development.

For example, we may define continuous integration with regular tests for each push to version control and
subsequent deployments. This may also be combined with continuous deplyments, perhaps as an end result of
successful tests and builds.

We may also consider various options for fault tolerance, including standard logging, monitoring, and, perhaps,
clustering.



For each stage of an app's development, it is common to consider appropriate tests, then adjust the build
process accordingly, modify the code, and then repeat as necessary.

In effect, we define a build first approach to an app's design and development.

Sample tools

As we design and build our apps, we're obviously concerned with code usage, abstraction, and the various
phases of development noted above.

However, a key part of code quality and structure may include use of tools such as task runners, build tools,
asset management, linters, and so on.

We may initially consider Linters, such as JSHint, task runners, and applicable bundlers.

Each of these tools provides support for various phases of the app's development, build, deployment, and
ongoing maintenance.

linters

A linter may be useful for determining syntax errors in an app's code. For example, it may return code issues
such as

undeclared variables
missing semi-colons
strict syntax errors
...

It may also be useful for enforcing coding best practices, including common structural patterns and usage.
Linting will also work with different code groups, from short snippets to a list of files.

For JavaScript, a Linter often completes the role of a traditional compiler, checking the code before build. In
effect, it defines whether the JS code may be interpreted successfully by a JS engine.

Some Linters may also be configured to highlight overly complex code and structures. Perhaps, verbose
functions, issues with code blocks such as conditional statements, scoping problems or mis-use, &c.

Many developers consider linting as the first desirable test for JS development. It becomes a worthwhile pre-
cursor to unit testing and release.

basic lint usage

For JavaScript based app development, a common option for linting is JSHint. This tool is written using Node.js,
and is used for linting both files and code snippets. We may also combine its usage with build tools such as
Grunt as part of a given build process.

To use the command line tool for JSHint, we need to install Node.js. For this installation, we may either use a
direct install from the Node.js website, or a package manager such as Brew, NuGet, NPM &c.

Once Node.js is installed, we may then add JSHint's command line tool using NPM,



npm install -g jshint 

We may then check the installed version using the standard command,

jshint -v 

After successfully installing JSHint, we may then cd to the root of a project directory with JS files and code to
check. To check all files at the CWD, we may issue the following initial command,

jshint . 

Of course, we may also exclude certain directories and files. For example, for a Node.js based project it is
common practice to exclude the node_modules directory for development linting of a local project

jshint . --exclude node_modules 

If we execute this command, we might get the following type of return for files with errors

lib/spire/maths/circle.js: line 25, col 2, Missing semicolon. 
 
lib/spire/maths/square.js: line 16, col 2, Missing semicolon. 
 
lib/spire/spire.js: line 45, col 2, Missing semicolon. 
 
3 errors 

As we correct such errors, and then re-run the JSHint command, we will get no return output unless there are
errors or syntactic issues &c. in the code. We're aiming for an empty return with no errors.


