
Notes - JavaScript - ES Modules

Dr Nick Hayward

A collection of notes &c. on plain JavaScript modules, in particular fundamental structural design for ES modules
introduced with ES2015.

Contents

Intro
Variables in JavaScript

global issues
Modular design
ES modules

how they work
module record
module instance
asynchronous or synchronous

Finding a module file
browser loading of module files
CommonJS blocking

Parsing ES modules
Instantiation of ES modules

instantiate module graph
ES module live bindings

Evaluation
Conclusion

Intro

Modules in JavaScript are not a new concept. For example, CommonJS is a popular option for modular
development with Node.js.

However, with the introducion of ES2015 (ES6), we now have a built-in option for plain JavaScript, ES Modules.

Variables in JavaScript

As we develop with JavaScript, variables are a fundamental part of the way we build and manage the logic for
our applications.

JavaScript helps us manage variables, and effectively limit their number in a given context, using scope. For a
given app, we may only need to track and maintain a few variables per scope.

However, due to the nature of scope, functions in JavaScript are unable to access variables in other functions
not in the same scope. A child function may access a parent function's variables, but not vice-versa.

This helps with context, structure, and logic. However, sharing variables may become an issue.

global issues



Resorting to global declaration is problematic, and inherently relies on scripts being run in the required order.
jQuery's early reliance on global declarations is a familiar example.

Another issue with global scope is open access to these declared variables. Any code in the global scope now
has access to these variables, including modification.

Modular design

Modules are an efficient option for organising such variables and functions into logical groupings per app.

We may export variables, functions &c. from a module, and then import as necessary in another module.

This simple option to import and export makes it easier to abstract and divide logic within an app. It can also help
decouple app code, providing independent functionality and testing per module.

Then, we may combine modules as needed to create various patterns and usage within an app.

ES modules

ES modules are now supported by all major web browsers. Node.js has also started to add support.

how they work

As we develop apps with modular patterns, we define connections between dependencies using any of the
available import statements. In effect, we create a graph of dependencies relative to each app.

In effect, a defined import statement provides an access point to the graph. The path and extent of the traversal
is relative to this access point. It might be shallow or deep, thereby defining a module's access to functions and
variables.

module record

We might define and save our code as modules in JavaScript files, but a browser will need to parse them into
usable data structures. These are known as module records.

Such records inform the browser of the content and usage within an app's files.

A module record will then be turned into a module instance, which combines two things,

code
a set of instructions - logic for the app...

state
state defines variable values at a given snapshot
data relative to a given point in time for the execution of the app

Such variables, however, are merely named references to parts of the memory storing the values.

module instance

Module loading for each app requires an instance per module, and a full graph of all module instances.



ES modules reconcile this process as follows,

construction
module records created for all files in the app

instantiation
location in memory defined for all exported values
exports and imports point to these locations - known as linking
n.b. values are not yet added to these memory locations

evaluation
code is run to fill memory locations with values...

asynchronous or synchronous

ES modules are often referred to as asynchronous. However, the above reconciliation steps are not necessarily
asynchronous. Depending upon the loading mechanism for the modules, they may be synchronous.

The ES module spec defines how files should be parsed into module records, plus how they should be
instantiated and evaluated.

However, it's interesting to note that this spec does not define how to initially load such files.

Each platform, such as browser, Node &c., may define a different loader spec.

Finding a module file

To work with ES modules in a browser platform, we need to tell the app where to find the file, e.g.

<script src="main.js" type="module"> 

This defines and loads the initial main.js file and module. To define dependencies, we may use import
statements, e.g.

import { count } from './counter.js' 

The file path, ./counter.js, is known as the module specifier. This tells the loader where to find the next
module, i.e. one of the defined dependencies.

n.b. each host and platform will have a specific way of handling such module specifiers. Each platform will
reconcile such paths using a module resolution algorithm, which may mean some Node.js defined specifiers will
not work in a browser.

browser loading of module files

Currently, a browser relies on URLs for the path of a module specifier.

However, this does not apply for the full graph of modules. In effect, the loader does not know the required
dependencies until the file has been parsed. The file, of course, may not be parsed until it has been fetched.



So, the tree of app files needs to be processed layer by layer. A file is parsed, each dependency is noted, then
found, and finally loaded.

To help ES modules handle this parsing and loading without blocking the single thread for JS, the ES module
spec splits the algorithm into multiple phases. This allows the construction and instantiation to operate in
separate phases.

A browser may fetch files, build up an understanding of the module graph, and then work on the instantiation.

CommonJS blocking

This split phase algorithm is a notable difference between ES and CommonJS modules.

This is because loading from the filesystem is inherently faster than loading from a URL - Node.js and
CommonJS modules may, therefore, block the main thread whilst a file is loading. Also, instantiation and
evaluation are not separate phases in CommonJS.

However, it also means that CommonJS is able to traverse the full module tree, load, instantiate, and evaluate
any required dependencies before returning the module instance.

A benefit, in some contexts, to this approach is the option to use variables in the module specifier.

However, as ES modules need to build up the whole module graph beforehand, it is not possible to define
variables as part of the URL for module specifiers.

Parsing ES modules

After fetching a file, we need to parse it into a module record. As noted above, this helps the browser
understand the required parts of a given module.

This module record is then added to the module map. Subsequently, each request for this module will now be
pulled from this map.

Each module is also parsed with strict mode enabled by default.

The value of this will be also be undefined.

To help browsers parse files, we may explicitly define a file as a module type, e.g.

<script src="main.js" type="module"> 

This also helps the browser know that any subsequent imports from this file will also be modules.

So, by the end of the loading process we now have module records from a given module file.

Instantiation

As noted above, an instance combines our app's code with its state. The state will exist in memory, so
instantiation is needed to link or connect things to memory.



The JavaScript will, firstly, create a module environment record, which manages the variables for the module
record.

Then, it finds locations in the memory for all of the defined exports.

The module environment record tracks memory locations to exports.

As noted above, values will not be added to their respective memory location until evaluation.

However, there is an exception to this rule. If an export defines a function declaration, it will be initialised during
this phase.

instantiate module graph

The JS engine will instantiate the module graph using a depth first post-order traversal.

So, it will start at the bottom of the graph with dependencies that do not depend on anything else, and setup
their exports. It will setup all of the exports that a module relies upon.

The JS engine will then move back a level to wire up imports from that module.

n.b. both import and export will point to the same location in memory. So, by wiring up exports first, the JS
engine guarantees all imports can be connected to their matching exports.

n.b.2 in CommonJS, the export object is copied on export, which means any exported values are copies.
Therefore, if the exporting module subsequently changes a value, the importing module will not be aware of the
change. An app's lifecycle will then need to restarted, for example, for the changes to appear in the app.

ES module live bindings

Another notable difference between CommonJS and ES modules is the use of live bindings.

With live bindings in ES modules, if a value changes all dependent modules will be informed as well. In effect, the
export and import module point to the same location in memory for a given value &c.

In effect, if the exporting module updates a value, the importing module will also see this change.

However, only an exporting module will be able to update such a value. An importing module may not change
the value of their imports. The only caveat is with standard object usage in JavaScript. An object's property may
be modified, as expected, from an importing module.

Evaluation

In the final step, evaluation, we are now able to add these values to their defined locations in memory.

The JavaScript engine will complete this by executing all of the top-level code, i.e. code outside of any functions.

To avoid multiple evaluations of such code, which may include queries to servers, data stores &c, a module map
will cache the module by URL. This ensures there is only one module record for each module. It also ensures that
each module file is only executed once. This will follow the same pattern as instantiation, and use a depth first
post-order traversal.



Potential side effects should be avoided using this process.

Conclusion

One of the inherent benefits of ES modules, and the above three phase design, is support for patterns such as
cycles in module and code execution.

Live bindings, and the nature of this phased design, ensures values may be updated and used as needed within
an app.


