
Notes - JavaScript - ES Modules - Usage

Dr Nick Hayward

A collection of notes &c. on plain JavaScript modules, in particular usage of ES modules introduced with
ES2015.

Contents

Intro
Export - export statements
Export - export default
Module bindings
Export - named export
Export - lists
Export - export from ...
Import - import statements
Import - import named exports
Import - import with wildcard
Benefits & practical usage

Intro

simpler and easier to work with than CommonJS
in most examples...

JavaScript strict mode is enabled by default
strict mode helps with language usage - check for poor usage

stops hoisting of variables
variables must be declared
function parameters must have unique name
assignment to read-only properties throws errors
...

modules are exported with export statements
modules are imported with import statements

Export - export statements

ES6 modules are individual files
expose an API using export statements

declarations are scoped to the local module
e.g. variables declared inside a module

not available to other modules
need to be explicitly exported in module API
need to be imported for usage in another module

export statements may only be added to top-level of a module
e.g. not in function expression *&c.

cannot dynamically define and expose API using methods

unlike CommonJS module system - Node.js &c.

Export - export default

common option is to export a default binding, e.g.

export default `hello world`

export default {
 name: 'Alice',
 place: 'Wonderland'
}

export default [
 'Alice', 'Wonderland'
]

export default function name() {
 ...
}

Module bindings

ES modules export bindings
not values or references

e.g. an export of count variable from a module
count is exported as a binding
export is bound to count variable in the module
value is subject to changes of count in module

offers flexibility to exported API
e.g. count might originally be bound to an object
then changed to an array...

other modules consuming this export
they would see change as count is modified
modified in module and exported...

n.b. take care with this usage pattern
useful for counters, logs &c.
can cause issues with API usage for a module

Export - named export

we may define bindings for export
instead of assigning properties to implicit export object

e.g.

export let counter = 0
export const count = () => counter++

cannot refactor this example for named export
syntax error will be thrown
e.g.

let counter = 0
const count = () => counter++
export counter // this will return syntax error
export count

rigid syntax helps with analysis, parsing
static analysis for ES modules

Export - lists

lists provide a useful solution to previous refactor issue
syntax for list export easy to parse
export lists of named top-level declarations

variables &c.
e.g.

let counter = 0
const count = () => counter++
export { counter, count }

also rename binding for export, e.g.

let counter = 0
const count = () => counter++
export { counter, count as increment }

define default with export list, e.g.

let counter = 0
const count = () => counter++
export { counter as default, count as increment }

Export - export from ...

expose another module's API using export from...
i.e. a kind of pass through...

e.g.

export { increment } from './myCounter.js'

bindings are not imported into module's local scope
current module acts as conduit, passing bindings along export/import chain...
module does not gain direct access to export from ... bindings

e.g. if we call increment it will throw a ReferenceError
aliases are also possible for bindings with export from...

e.g.

export { increment as addition } from './myCounter.js'

Import - import statements

use import to load another module
import statement are only allowed in top level of module definition

same as export statements
helps compilers simplify module loading &c.

import default exports
give default export a name as it is imported
e.g.

import counter from './myCounter.js'

importing binding to counter
syntax different from declaring a JS variable

Import - import named exports

also imported any named exports
import more than just default exports

named import is wrapped in braces
e.g.

import { increment } from './myCounter.js'

also import multiple named exports
e.g.

import { increment, decrement } from './myCounter.js'

import aliases are also supported
e.g.

import { increment as addition } from './myCounter.js'

combine default with named
e.g.

import counter, { increment } from './myCounter.js'

Import - import with wildcard

we may also import using the wildcard operator
e.g.

import * as counter from './myCounter.js'
counter.increment()

name for wildcard import acts like object for module
call module exports on wildcard

import * as counter from './myCounter.js'
counter.increment()

common pattern for working with libraries &c.

Benefits & practical usage

offers ability to explicitly publish an API
keeps module content local unless explicitly exported

similar function to getters and setters
explicit way in and out of modules
explicit options for reading and updating values...

code becomes simpler to write and manage
module offers encapsulation of code

import binding to variable, function &c.
then use it as normal...

removes need for encapsulation in main JS code
e.g. with patterns such as IIFE...

n.b. need to be careful how we use modules
e.g. priority for access, security, testing &c.
all now moved to individual modules...

