
Notes - Webpack - Basic Usage

Dr Nick Hayward

A brief introduction to using Webpack bundler.

Contents

Intro
Setup
Sample project directory structure
Initial code
Develop the JS code
Run Webpack
Run the app
Custom config file
NPM scripts property

Intro

Webpack is a utility for bundling modules and project code for distribution release of browser compatible apps.

Getting started details may be found at the following URL,

https://webpack.js.org/guides/getting-started/

Setup

We may use Webpack to prepare apps with ES2015, CommonJS &c. modules for publication online.

Start by creating an npm project at the root of the project's CWD,

npm init

and answer the series of questions for the current project. Or, we may simply accept the defaults using the -y
flaf,

npm init -y

Install Webpack and dependencies,

npm install webpack webpack-cli --save-dev

Then modify package.json

add "private": true,
remove "main": "index.js",

The private property ensures this NPM project is not published to NPM.

We remove the main property to allow Webpack to manage project dependencies and bundling.

Sample project directory structure

Then, we'll create a sample application structure for use with Webpack.

e.g.

|- /dist
 - index.html
 - main.js
|- /node_modules
|- /src
 - index.js
|- package-lock.json
|- package.json

Initial code

Then, we may add some initial project code to

/dist/index.html
/src/index.js

and add a reference to the main.js file in index.html for distribution usage of the app.

This file, dist/main.js, will hold the minified and optimised JS code for the app from src/index.js.

Develop the JS code

Add any required JS code to src/index.js.

This is the entry point for dependencies and modules, which are then processed by Webpack into the app's
dist/main.js file.

So, we may import and export any required NPM or custom modules, and load the app via this file,
src/index.js.

Run Webpack

We may then test build this code and app structure with Webpack.

In the root of the app's CWD, issue the following terminal command

npx webpack

This will process the src directory files, and any dependencies, and output the distribution app in the dist
directory.

Run the app

After successful running Webpack, and minifying and optimising our app's code, we may run the app from the
dist directory.

The dist directory is the root of the app's directory structure.

Custom config file

Webpack allows us to also specify a custom config file for build settings.

At the root of the project directory, we may now create a config file,

|- webpack.config.js

and then some initial settings,

const path = require('path');

module.exports = {
 mode: 'production',
 entry: './src/index.js',
 output: {
 filename: 'main.js',
 path: path.resolve(__dirname, 'dist')
 }
};

So, we might modify this config to support an alternative start file, entry, for the app's JavaScript logic. We may
also modify the structure of the distribution output, again specifying alternative filenames and directories.

To run this file, we may, for example, explicitly call the config filename, webpack.config.js with the webpack
command.

npx webpack --config webpack.config.js

As this config filename is the default, we do not need to explictly append the --config flag and filename to this
command. However, we may still use this flag with an alternative config filename.

NPM scripts property

We may also add a call to webpack as a build property in the scripts object of NPM's package.json file.

e.g.

...
"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "build": "webpack"
 },
...

Then, we may simply issue the standard build command using npm run,

npm run build

