
React	Native	-	Basics	-	Flexbox	Layout
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	flex	layout	in	React	Native	app	development.

Contents

intro
flexDirection

justifyContent

alignItems

more	layout	options

Intro

React	Native	uses	the	flexbox	algorithm	to	specify	layout	and	design	for	its	components,	and	their	children.

An	inherent	benefit	of	flexbox	layouts	are	their	adaptation	to	multiple	screen	sizes,	aspect	ratios,	and	orientations.

There	are	many	similarities	between	flexbox	usage	for	CSS	and	React	Native.	However,	there	are	also	some	known
differences	as	well.

To	quote	the	React	Native	documentation,

Flexbox	works	the	same	way	in	React	Native	as	it	does	in	CSS	on	the	web,	with	a	few
exceptions.	The	defaults	are	different,	with	flexDirection	defaulting	to	column	instead	of
row,	and	the	flex	parameter	only	supporting	a	single	number.

For	React	Native,	there	tends	to	be	three	predominant	uses,	including

alignItems

flexDirection

justifyContent

flexDirection

By	defining	a	component's	 flexDirection ,	we're	setting	the	organisational	pattern	for	its	subsequent	children.
These	might	be	set	to	a	horizontal	row	or	a	vertical	column.	By	default,	 flexDirection 	will	be	set	to	a	column.

e.g.

const	styles	=	StyleSheet.create({
		container:	{
				flex:	1,
				flexDirection:	'row',
		},
});

So,	a	 View 	with	the	style	for	 container 	will	use	all	of	the	available	screen	space,	and	render	its	child	components
in	a	row	pattern.	One	after	another,	cascading	from	row	to	row.



justifyContent

We	may	then	update	this	style	to	define	how	child	components	start	to	fill	each	row,	effectively	setting	their	
justifyContent 	value.	Options	include,

flex-start

flex-end

space-around

space-between

e.g.

const	styles	=	StyleSheet.create({
		container:	{
				flex:	1,
				flexDirection:	'row',
				justifyContent:	'flex-end'
		},
});

alignItems

Align	items	offers	a	simple,	complementary	option	to	 flexDirection .

So,	if	the	direction	for	the	primary	axis,	set	using	 flexDirection ,	is	column,	 alignItems 	will	define	the	secondary
axis	as	row.

Available	options	include,

flex-start

flex-end

center

stretch

However,	there	is	a	caveat	to	using	the	 stretch 	value.	We	need	to	ensure	that	no	fixed	dimensions	are	set	for	any
children	of	the	flex	component.

const	styles	=	StyleSheet.create({
		container:	{
				flex:	1,
				flexDirection:	'column',
				justifyContent:	'flex-start',
				alignItems:	'stretch',
		},
});

more	layout	options

Further	options	may	be	specified	as	props,	which	we	can	add	to	a	given	component	or	stylesheet.	Full	details	can	be
found	at	the	following	URL,

Layout	Props

https://facebook.github.io/react-native/docs/layout-props.html

