
React	Native	-	Basics	-	Intro
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	React	Native	app	development.

Contents

intro
first	app	-	basic-app

how	to	start	an	app	-	iOS	on	OS	X
how	to	start	an	app	-	Android	on	OS	X

basic	app 	-	intro
basic	app	directory	structure
getting	started
new	component

Intro

Inherently	familiar	to	React	developers,	React	Native	offers	a	native	mobile	experience	with	React	JS	patterns	and
structures.

However,	instead	of	creating	reusable	components	for	the	web,	it	allows	developers	to	use	and	create	native
components	for	Android	and	iOS.

As	such,	the	basics	of	React	development	are	still	required	for	React	Native	development,	including

components
JSX
props
state
...

first	app	-	basic-app

A	basic	app	for	React	Native	will	follow	a	known,	prescribed	pattern.

We	can	use	the	React	Native	CLI	tool	to	generate	a	shell	app	for	developing	an	app.

In	a	development	directory,	e.g.	 /Development/react-native/ ,	we	can	issue	the	following	command	to	generate
project	files	for	an	app,

react-native	init	BasicApp

This	command	will	call	the	React	Native	CLI,	which	will	then	initialise	a	new	project	named	 BasicApp .	This	project,
and	all	of	the	necessary	initial	files,	will	be	installed	to	a	directory	named	 BasicApp 	in	the	current	working	directory.

This	command	will	also	output	some	useful	instructions	for	running	an	app	on	iOS	and	Android.	It	also	details	how	to
open	the	project	files	using	Xcode.

n.b.	this	is	not	a	fast	process	-	it	may	time	some	time	to	initialise	a	new	project

how	to	start	an	app	-	iOS	on	OS	X

We	can	now	start	our	initial	project	to	test	that	it	runs	OK	on	OS	X.	We'll	need	to	be	in	the	project	directory	for	the	app



to	load	and	run.	Then,	we	can	issue	the	following	command	in	the	terminal,	e.g.

react-native	run-ios

This	command	will	build	the	project,	launch	the	iOS	simulator,	and	then	show	the	app	in	a	simulator	window.	For	the
initial	build	request,	this	may	take	a	long	time	depending	upon	system	performance.

n.b.	if	the	app	is	not	automatically	loaded	in	the	simulator	window,	simply	drag	the	screens	in	the	emulator,	and	then
click	on	the	React	Native	app	icon	to	launch	the	app

how	to	start	an	app	-	Android	on	OS	X

Assuming	Android	has	been	setup	and	configured	correctly,	running	an	app	with	Android	follows	the	same	pattern	as
iOS,	e.g.

react-native	run-android

Initial	run	will	scan	local	machine	for	symlinks,	starts	JS	server	for	development	and	testing,	and	then	it	will	need	to
download	and	config	Gradle	for	local	Android	setup.	It	starts	to	build	and	install	the	app	in	the	CWD.

basic	app 	-	intro

We	can	now	start	to	develop	a	basic	app	with	React	Native.

We'll	add	a	basic	screen,	show	a	list	of	items	from	JSON,	and	render	some	images.	We'll	also	respond	to	user
interaction,	and	connect	to	a	remote	resource	to	show	usage	of	links	and	external	apps.

In	particular,	we'll	consider	how	the	fundamental	structures	and	patterns	working	in	React	Native.

app	-	basic	app	directory	structure

When	we	generate	a	new	app	with	React	Native	CLI,	we	get	a	boilerplate	structure	for	the	initial	app.	However,	there
are	a	few	important	files	to	consider	for	app	development	on	iOS	and	Android.

Basic	structure	is	as	follows,

|--	helloworld
				|__	__tests__
				|__	android
				|__	ios
				|__	node_modules
				|__	App.js
				|__	app.json
				|__	index.js
				|__	package-lock.json
				|__	package.json
				|__	...

These	are	the	main	directories	and	files	created	as	we	initialise	a	new	project.

All	of	the	necessary	files	to	build	an	app	with	React	Native	for	iOS	and	Android	are	located	in	their	respective
directories.	These	are	native	project	directories,	and	can	be	imported	as	native	apps	into	Android	Studio	and	Xcode.
However,	for	most	apps	it	is	unlikely	a	developer	will	need	to	modify	files	in	either	directory.	They	can	be	useful	for
customisation	or	deeper	config	&c.,	but	it's	not	necessary	to	modify	these	files	to	build	most	apps.

The	 app.json 	file	includes	brief	metadata	for	a	generated	app.	e.g.	name,	display	name,	and	so	on,

As	is	customary,	node	modules	are	located	in	the	 node_modules 	directory.	Not	necessary	to	modify	these	files	and



directories.	Likewise,	the	 package,json 	file	is	a	standard	file	for	Node	development,	which	contains	metadata	for	the
React	Native	app.

app	-	getting	started

We	can	start	a	new	 BasicApp 	by	clearing	the	biolerplate	code	from	the	 App.js 	file.	Then,	we	can	add	a	basic
component	for	a	home	screen	message,	e.g.

//	import	React,	Component	module	as	Component	from	base	React
import	React,	{	Component	}	from	'react';
//	import	Text	as	Text	from	React	Native
import	{	Text	}	from	'react-native';

//	default	export	-	BasicApp	-	used	when	no	explicit	import	reference...
export	default	class	BasicApp	extends	Component	{
		render()	{
				return	(
						<Text>Greetings,	Human!</Text>
				);
		}
}

To	use	this	new	component	within	our	app,	we	can	register	it	in	the	default	 index.js 	file,	e.g.

//	import	AppRegistry	as	AppRegistry
import	{	AppRegistry	}	from	'react-native';
//	import	App	from	App.js	(.js	implied...)
import	App	from	'./App';

//	register	new	component	as	Basic	App	-	pass	default	from	App.js
AppRegistry.registerComponent('BasicApp',	()	=>	App);

If	we	now	run	this	app	in	the	iOS	simulator,	we'll	see	the	following	output



There's	no	styling	or	app	UI	structure	at	the	moment,	which	is	why	the	output	text	is	rendered	in	the	top	left	corner	of
the	app	screen.

This	can	be	fixed	by	modifying	the	design	and	layout	for	an	app.



app	-	new	component

This	app	includes	a	new	component,	 BasicApp ,	which	we	can	use	to	render	the	Text	component	as	the	app	starts.

For	each	new	component,	the	only	default	requirement	is	the	 render() 	function.	This	function	simply	returns	some
JSX	for	rendering	in	the	app.


