
React	Native	-	Basics	-	State
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	State	in	React	Native	app	development.

Contents

intro
General	usage
state 	usage

Intro

React	and	React	Native	manage	data	using	either	 props 	or	 state .

Props 	are	set	by	the	parent,	and	remain	immutable	for	a	component's	lifetime.

If	we	need	to	modify	data	whilst	an	app	is	running,	we	can	use	 state .

With	React,	there	is	distinct	pattern	to	 state 	usage,	which	is	as	follows,

state 	should	be	initialised	in	the	constructor	for	a	component	&c.
setState 	may	then	be	used	to	modify	and	update	 state

General	usage

We	can	use	 state 	to	manage	data	within	an	app,	from	basic	UI	updates	to	data	from	a	remote	DB	or	API.

As	the	data	is	updated,	we	can	likewise	modify	 state 	within	our	app.

state 	may	be	managed	within	a	React	Native	app	or	by	using	containers	such	as	Redux.	Such	containers	help
manage	and	control	data	flow	within	an	app,	in	particular	as	the	app	scales	to	meet	greater	requests	on	 state .

By	introducing	a	container	such	as	Redux,	we	circumvent	direct	management	of	 state 	with	 setState .	Instead,	
state 	updates	rely	upon	Redux	management.

state 	usage

A	basic	example	of	 state 	usage	and	maintenance	may	set	a	static	message	using	 props ,	and	then	update	a
notification	using	 state .

e.g.

//	import	React,	Component	module	as	Component	from	base	React
import	React,	{	Component	}	from	'react';
//	import	Text	as	Text	&c.	from	React	Native
import	{	AppRegistry,	Text,	View	}	from	'react-native';

//	abstracted	component	for	rendering	*tape*	text
class	Tape	extends	Component	{
		//	instantiate	object	-	expects	props	parameter,	e.g.	text	&	value
		constructor(props)	{
				//	calls	parent	class'	constructor	with	`props`	provided	-	i.e.	uses	Component	to	
setup	props
				super(props);
				//	set	initial	state	-	e.g.	text	is	shown
				this.state	=	{	showText:	true	};



				//	set	timer	for	tape	output
				setInterval(()	=>	{
						//	update	state	-	pass	`updater`	and	use	callback	(optional	for	setState)
						//	`updater`	prevState	is	used	to	set	state	based	on	previous	state
						this.setState(prevState	=>	{
								//	setState	callback	-	guaranteed	to	fire	after	update	applied
								return	{	showText:	!prevState.showText	};
						});
				},	1500);
		}

		//	call	render	function	on	object
		render()	{
				//	set	display	boolean	-	showText	if	true,	else	output	blank...
				let	display	=	this.state.showText	?	this.props.text	:	'	';
				return	(
						//	output	text	component	with	text	from	props	or	blank...
						<Text>{display}</Text>
				);
		}
}

export	default	class	TickerTape	extends	Component	{
		render()	{
				return	(
						//	create	View	container	-	then	instantiate	Tape	objects	-	pass	text	props
						<View>
								<Tape	text="welcome	to	the	test	state	app!"	/>
						</View>
				);
		}
}

//	register	app	Root	-	component	for	appKey,	component	to	run	(component	provider	to	
return...)
AppRegistry.registerComponent('BasicAppState',	()	=>	TickerTape);

In	this	example,	we	define	the	required	imports	for	React	and	React	Native,	including	existing	components	we	need	for
this	basic	app.

AppRegistry 	-	entry	point	for	JavaScript	to	enable	a	React	Native	app	to	run...
added	as	part	of	 init 	command	for	React	Native	apps

Text 	-	used	to	display	text	within	an	app
View 	-	a	UI	container	for	displaying	content	(basic	requirement	for	UI	development	with	React	Native)

supports	layout	structures	with	flexbox,	style,	touch,	accessibility...

Then,	we	define	our	required	custom	components.	One	abstracted	for	broader	re-use,	the	other	for	use	in	the	current
specific	app.

The	 Tape 	class	is	an	abstracted	component	for	rendering	passed	text	with	a	timer.	The	constructor	for	this	class
instantiates	an	object	with	passed	 props ,	e.g.	passed	text	for	rendering.

Within	this	constructor,	 super 	is	used	to	call	the	parent	class'	constructor	with	 props 	provided	-	i.e.	uses
Component	to	setup	props.	We	can	then	set	the	initial	 state 	on	the	instantiated	object,	which	will	default	to	 true
for	this	component.

Then,	we	can	call	the	JS	function	 setInterval() 	to	create	a	basic	timer,	which	creates	the	simple	UI	animation.	A
delay	is	set	to	1500	milliseconds.

The	main	focus	of	this	function	is	to	modify	 state ,	which	will	trigger	an	update.	So,	we	can	call	 setState 	on	the
current	object.	This	function	is	called	with	a	passed	 updater 	and	a	callback.



updater 	prevState	is	available	for	the	 setState 	function,	and	is	used	to	set	state	based	on	previous	known	state.	
state 	itself	may	not	necessarily	be	triggered	immediately,	and	React	may	delay	an	update	until	it	has	a	worthwhile
queue.	However,	we	can	call	an	immediate	callback	as	this	 setState 	is	registered.	In	this	example,	we	simply
change	the	boolean	value	for	 showText .	e.g.	false	to	true,	true	to	false.

We	can	then	call	the	 render() 	function	on	the	current	object,	outputting	text	passed	using	 props .	We	simply	check
the	boolean	value	in	 state ,	and	then	render	a	 text 	component	with	 props 	text	or	a	blank	space.

The	default	component	(exported	module)	for	this	app	is	set	to	the	 TickerTape 	class,	which	renders	a	 view
container	with	the	custom	component	for	 Tape .	We	can	simply	pass	 props 	for	the	required	text	to	render.

References

MDN	-	super

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super

