
React	Native	-	Basics	-	Style
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	Style	in	React	Native	app	development.

Contents

intro
general	usage
style 	usage
platform	specific	styles
component	sizes

Intro

React	Native	uses	JavaScript	to	define	and	set	styling	within	an	app.

These	styles	can	be	set	as	props	on	all	of	React	Native's	core	components	using	the	 prop 	called	 style .

It	is	also	possible	to	set	a	 prop 	for	style	on	custom	components.

General	usage

Similar	to	CSS	usage	with	standard	client-side	apps,	styles	are	defined	and	set	for	colour,	size,	background	colour,
and	so	on.	Property	names	for	these	styles	are,	however,	specified	using	a	camelCase	pattern.	e.g.

fontWeight
fontSize
backgroundColor

Such	styles	may	be	set	using	a	plain	JavaScript	variable	as	a	container	for	multiple	styles.	Using	
StyleSheet.create() ,	we	can	pass	an	object	defining	multiple	custom	style	properties.	These	properties	include
name/value	pairs,	and	the	value	is	set	as	an	object	with	the	defined	styles.	e.g.

const	styles	=	StyleSheet.create({
		headermain:	{
				fontWeight:	'bold',
				fontSize:	25,
				color:	'green',
		},
});

style 	usage

To	add	a	style	to	a	component,	we	can	set	the	value	of	the	 style 	prop	to	a	standard	JavaScript	object.

e.g.

<Text	style={styles.headermain}>	Main	Header</Text>

In	this	example,	we're	simply	using	the	property	from	the	 styles 	object,	which	in	turn	will	add	the	required	 style
values	for	the	defined	prop.

Platform	specific	styles



A	common	requirement	for	development	is	the	abstraction	of	code,	and	likewise	styling	for	an	app's	UI.

For	React	Native,	we	also	need	to	consider	both	iOS	and	Android.	So,	we	might	use	the	 Platform 	module	to	add
platform	detection	for	iOS	or	Android.

We	can	add	this	directly	to	a	stylesheet,	e.g.

import	{	Platform,	StyleSheet	}	from	'react-native';

const	styles	=	StyleSheet.create({
		container:	{
				flex:	1,
				justifyContent:	'center',
				alignItems:	'center',
				backgroundColor:	'#F5FCFF',
		},
		welcome:	{
				...Platform.select({
						ios:	{
								fontFamily:	'Arial',
								color:	'cadetblue',
						},
						android:	{
								fontFamily:	'Roboto',
								color:	'green',
						},
				}),
				textAlign:	'center',
				margin:	10,
				fontSize:	20,
		},
});

In	this	example	 styles ,	we	can	set	platform	specific	styling	for	font	colour	and	font	family.	The	remaining	styles	will
then	be	applied	for	both	platforms.

Style	inheritance

The	documentation	for	React	Native	suggests	a	preferred	pattern	for	setting	parent	styles,	which	may	then	be
inherited	for	children.

This	pattern	uses	nested	components	with	a	custom	parent	defined	with	abstracted	styles.	A	child	component	may
then	inherit	such	styles	or	override	with	specific	component-level	styles.

e.g.

class	MyAppText	extends	Component	{
		render()	{
				return	(
						<Text>
								{this.props.children}
						</Text>
				);
		}
}

A	parent	component	is	created	for	an	app's	rendering	of	basic	text.	This	will	simply	return	any	child	text	as	a	default	
Text 	component.	However,	we	may	also	create	custom	styles	to	add	to	this	new	component.

e.g.

textdefault:	{



		fontSize:	15,
		color:	'#000'
}

Usage	may	then	be	as	follows,

<MyAppText	style={styles.textdefault}>
		some	app	text...
		<Text	style={styles.welcome}>Welcome	to	Styles!</Text>
</MyAppText>

So,	the	child	text	in	the	 MyAppText 	component	will	initially	be	styled	with	the	 textdefault 	styles.	We	may	then
override	or	supplement	these	styles	with	specific	styles	on	a	given	child	component.

e.g.

welcome:	{
		...Platform.select({
				ios:	{
						fontFamily:	'Arial',
						color:	'blue',
				},
				android:	{
						fontFamily:	'Roboto',
						color:	'green',
				},
		}),
		fontSize:	25,
		textAlign:	'auto',
		backgroundColor:	'#ddd',
}

Component	sizes

We	can	also	specify	sizes	for	a	component,	including	height	and	width	as	rendered	in	an	app's	screen.

e.g.

<View	style={{width:	200,	height:	100}}	/>

This	allows	us	to	easily	create	separation	and	variance	in	the	rendering	of	our	components.

working	with	Flex	dimensions

We	can	use	flex	to	define	how	a	component	may	occupy	space	within	a	screen.

A	standard	usage	is	to	simply	set	a	 View 	component,	for	example,	to	 flex:	1 .	This	tells	the	component	to	fill	all	of
the	available	space.

However,	this	usage	will	also	be	dependent	upon	the	structure	and	size	of	the	parent	component.	It	will	only	be	able	to
expand	into	space	if	it's	available.

e.g.

<View	style={{flex:	1}}>
		...
</View>


