Comp 322/422 - Software Development for Wireless
and Mobile Devices

Fall Semester 2019 - Week |3

Dr Nick Hayward

Cordova & React - Data - Firebase

listener events - intro

= for subscriptions and updates
* Firebase provides a few different events

= for the on () method, we may initially consult the following documentation
= Firebase docs - on () events

= need to test various listeners for datastore updates

https://firebase.google.com/docs/reference/js/firebase.database.Reference#on

Cordova & React - Data - Firebase

listener events - child removed event

= add a subscription for event updates
* as a child object is removed from the data store.

= child removed event may be added as follows,

// - listen for child removed event relative to current ref path in DB
db.ref ('egypt/ancient_sites/').on('child_removed', (snapshot) => {
console.log('child removed = ', snapshot.key, snapshot.val());

1)

Cordova & React - Data - Firebase

listener events - child changed event

= also listen for the child changed event
* relative to the current path passed to ref ()

° eg

// - listen for child changed event relative to current ref path in DB
db.ref ('egypt/ancient_sites/').on('child_changed', (snapshot) => {

console.log('child changed = ', snapshot.key, snapshot.val());

)i

Cordova & React - Data - Firebase

listener events - child added event

= another common event is adding a new child to the data store
* a user may create and add a new note or to-do item...
e e.g. new child added to specified reference

// - listen for child_added event relative to current ref path in DB
db.ref ('egypt/ancient_sites/').on('child_added', (snapshot) => {

console.log('child added = ', snapshot.key, snapshot.val());

)i

Mobile Desigh & Development - Data Usage
Fun Exercise
A single app, multiple views

= Todo - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/todo/

For each app, consider the following

= jnitial data preparation
= data loading as app starts and renders home screen
= data manipulation and updates

= data validation and integrity

~ |10 minutes

Cordova & React Native - Authentication

Firebase - setup authentication

= part of using authentication with Firebase
* need to explicitly configure this option in the Console Dashboard

= need to setup the sign-in method for a particular database

= select various options and providers, including
* email and password
* phone
* Google
* Facebook
o Twitter
e GitHub
e and Anonymous

Image - Firebase

authentication options

egyptian-auth = Authentication Gotodocs M @

Sign-in providers
Provider Status

Email/Passwond

Enable ‘

Allow users to sign up using their emnail address and password. Our SDKs also provide email
address verification, password recovery, and email address change primitives. Learn more [

CANCEL SAVE

Y. Phone Dizabled
G Google Disabled
H Facebook Disabled
W Twitter Disabled
) citkub Disabled
2, Anonymous Disabled

Firebase - auth options

Cordova & React Native - Firebase Auth

Cordova Login Form

= HTML for this type of form might be as follows,

<form id="fb-login">
<input type="text" value="add your username" />
<input type="password" />
<button id="submit-login">login</button>

</form>
= for single sign-in, e.g. Google, add a login button

<button id="submit-login">login</button>

Cordova & React Native - Firebase Auth

Cordova - test form logic

= then add some initial JavaScript logic
* test the form and the submit login button

® need to test a click event listener for the button

= define a callback for successful login and error handling

document.getElementById('submit-login').addEventListener('click’', () => {

console.log('login button clicked');

)i

Cordova & React Native - Firebase Auth

Auth routing

= another requirement for authentication
* correct routing of the authentication request

= if a user's login is successful
* they need to be redirected back to the app

= if a user's login is unsuccessful
* user may be redirected back to the login page
* user may be shown an appropriate error message

= another consideration for routing
e authenticated access to an app's content

= user should be able to view all public material
* plus any material appropriate to their authenticated status

Cordova & React Native - Firebase Auth

Firebase Auth - sign-in method

= Firebase authentication requires initial configuration of settings
* configure and update using online console
* plus various properties defined in the host app

= add required sign-in methods
* need to modify the default config to enable this feature

* in the Firebase console
o select Authentication in left menu for required database
o select tab for Sign-in Method - provides various options for user authentication

e start by selecting Google authentication
o enable authentication service

Cordova & React Native - Firebase Auth

Firebase Auth - provider

= in JavaScript config file for Firebase
* need to define the required provider for our app

= e.g. for Google sign-in method on the Firebase console
* need to define a provider for this service in our app

// AUTH - define provider

const googleProvider = new firebase.auth.GoogleAuthProvider();

= usage is defined in the Firebase docs,
* Firebase Auth docs - Google Provider

= we may also see similar examples for Facebook, GitHub, Twitter, &c.

https://firebase.google.com/docs/reference/js/firebase.auth.GoogleAuthProvider

Cordova & React Native - Firebase Auth

Firebase Auth - auth state change

= Firebase provides various methods for working with authentication

= relative to firebase object in our app's JavaScript
* we may call auth () with various additional methods
e allows us to check a user's login state

= e.g. check state of a user's authentication request and return

// provides listener for user authenication
// checks if a user is logged in or not...
firebase.auth().onAuthStateChanged((user) => {
if (user) {
console.log('user logged in');
} else {

console.log('user logged out');
})i

= this example provides a listener
* logs to the console the state of user logins to the application

= as the app starts
e initially see result of query to Firebase for current user's login state
* prevents unauthorised access to restricted data &c.
* helps reduce login requests to remote service...

Cordova & React Native - Firebase Auth

Firebase Auth - auth login

= then call the following function
e starts login process for Google authentication

// start login call to return sign-in...
const startLogin = () => {

return firebase.auth().signInWithRedirect (googleProvider);

}i

= if a user is not currently logged in
* function will show a screen with option to login
* e.g. with Google account...

= the app's auth state will again be checked

= test this login call with the login button in our app
° eg

document.getElementById('submit-login').addEventListener('click', startLogin);

Cordova & React Native - Firebase Auth

Firebase Auth - auth login

= a successful login will redirect the user back to the app
* auth state listener will be updated, e.g. log to console

= successful login may be persisted as needed

= we may also check authenticated users in app's Firebase console
* select the Authentication option
* then the Users tab

= |ists all of the currently authenticated users for the app
e e.g. successful user logins

Cordova & React Native - Firebase Auth

Firebase Auth - auth logout

= to allow a user to logout, start by adding an explicit logout button
° eg

<button id="submit-logout">logout</button>

= we may set this button to only show when a user is logged in
e then hide dfter logging out...

= button will be called with a standard event listener
* executes a logout function

// start logout call to return sign-out...
const startLogout = () => {

return firebase.auth().signout();

}i

Cordova & React Native - Firebase Auth

Cordova app usage

= we may now allow a user to login and logout of the application
* e.g. with the Google provider service with Firebase

= we need to setup our example app to use the authenticated status
* e.g. authentication relative to permissions and access

= define what an authenticated user may access and view within the app

= need to define and setup specific requirements for Cordova app
e e.g. plugins, config, app usage...

Cordova & React Native - Firebase Auth

Cordova app usage - initial Firebase setup

= after creating a Firebase app & adding authentication options
* e.g. Google Sign-in

= need to enable specific native SDK support in Firebase
* e.g. setup an Android app for the hosted Firebase project

= in the Settings options for the current Firebase project
* add any require apps in the Your App section

= gives us the option to add support for Firebase in various apps
* e.g. Android, iOS, and Web app

= select option to add Android support, and complete required fields, e.g.
* app nickname - basic-fbauth
* package name - com.ancientlives.fbauth

Cordova & React Native - Firebase Auth

Cordova app usage - enable Firebase Dynamic Links

= 3 notable difference between Firebase Authentication with web and
Cordova
* the use of a redirect instead of the expected popup

= Firebase requires each project to enable Dynamic Links
e permits an app to redirect a user's authentication and custom token

= further details may be found at the following URL,
e https://firebase.google.com/docs/dynamic-links/

= use the following link to select a project to use with Dynamic Links
e https://console.firebase.google.com/project/_/durablelinks/links/

= after adding Dynamic Links
* need to record domain created for current Firebase project, e.g.
e https://myproject.page.link

Cordova & React Native - Firebase Auth

Cordova app usage - setup app

= after creating a Cordova app, adding support for the required platforms...
* need to install the following plugins for authentication support

plugin for build info (app name, ID...)

cordova plugin add cordova-plugin-buildinfo --save

plugin handles Universal Links (Android app link redirects)

cordova plugin add cordova-universal-links-plugin --save

plugin handles opening secure browser views on iOS/Android mobile devices
cordova plugin add cordova-plugin-browsertab --save

plugin handles opening a browser view in older versions of iOS and Android
cordova plugin add cordova-plugin-inappbrowser --save

plugin handles deep linking through Custom Scheme for iOS

& adds *com.firebase.cordova* in an iOS bundle ID...

cordova plugin add cordova-plugin-customurlscheme --variable \

URL_SCHEME=com. firebase.cordova --save

Cordova & React Native - Firebase Auth

Cordova app usage - update config.xml

= then, we need to update config.xml to work with Dynamic Links
° eg

<universal-links>
<host name="myproject.page.link" scheme="https" />
<host name="myproject.firebaseapp.com”" scheme="https">
<path url="/__ /auth/callback" />
</host>

</universal-links>

Cordova & React Native - Firebase Auth

Cordova app usage - update for Android

= specific to an Android app
* need to update the manifestWriter. js file in the following install directory
e ./plugins/cordova-universal-links-plugin/hooks/1lib/android/

= need to update it as follows

from

var pathToManifest = path.join(cordovaContext.opts.projectRoot,

'platforms', 'android', 'cordovalLib', 'AndroidManifest.xml');
to

var pathToManifest = path.join(
cordovaContext.opts.projectRoot,
'platforms’,
'android’',
'app’,
'src',
'main’,

'AndroidManifest.xml');

= we may then add the required JS logic to the Cordova app
* test authentication with Firebase and Google sign-in

Cordova & React Native - Firebase Auth

Cordova app usage - redirecting a user

= as a user logs in and logs out of an application
* need to ensure they are redirected correctly
* to appropriate content, page, or screen for their authentication status

= e.g. a user might be redirected to their account page after logging in
* then to the home page upon logout

= with explicit routing frameworks, we may define such pages or screens
* including custom stack navigation...

= we may also restrict access relative to log in status
* e.g. user, editor, admin...

Cordova & React Native - Firebase Auth

Cordova app usage - user access

= for a single page app
* we may restrict certain content relative to a user's authentication status

= a simple test of this status may be executed
* test in the state listener for Firebase authentication

° eg

// provides listener for user authenication
// checks if a user is logged in or not...
firebase.auth().onAuthStateChanged((user) => {

if (user) {

loginBtn.style.display = 'none’;
logoutBtn.style.display = 'inline';
console.log('user logged in');

} else {
loginBtn.style.display = 'inline';

logoutBtn.style.display = 'none';
console.log('user logged out');

)i

= now modifying value of display property for each button
* updated relative to a user's authentication status

= shows appropriate button to user dependent upon their auth state

= we might show certain content and options for an authenticated user
* or execute an async query for that user to the Firebase data store...

Cordova & React Native - Firebase Auth

Cordova app usage - app content

= one option we may test is simply showing and hiding content
= relative to a user's auth state

= e.g. a user logs into the app
* content is queried from the connected Firebase datastore

e app's Ul is then updated with this content

// provides listener for user authenication
// checks if a user is logged in or not...
firebase.auth().onAuthStateChanged((user) => {
const output = document.getElementById('fb-content');
if (user) {
loginBtn.style.display = 'none’;
logoutBtn.style.display = 'inline';
outputData(output);
console.log('user logged in - data output');

} else {
loginBtn.style.display = 'inline';
logoutBtn.style.display = 'none'’;

clearData(output);
console.log('user logged out - data output removed');

)i

Cordova & React Native - Firebase Auth

Cordova app usage - async data loading

= as data is loaded asynchronously from Firebase
* only loaded in app when a user has logged in successfully

° eg

// get ref in db once
// call forEach() on return snapshot
// push values to local array
// unique id for each DB parent object is “key~ property on snapshot
function loadData() {
// get data from FB
const data = db.ref('egypt/ancient_sites')
.once('value')
.then((snapshot) => {
const sites = [];
snapshot.forEach((siteSnapshot) => {
sites.push({
id: siteSnapshot.key,
...siteSnapshot.val()
})i
)i
return sites;
i
// return data Promise

return data;

Cordova & React Native - Firebase Auth

Cordova app usage - output data
= then call the then () method in the outputData () function to update

the Ul
° eg

// prepare data from loadData() for rendering
function outputData(elem) {
// use data Promise - append to DOM...
const output = loadData().then((data) => {

for (site in data) {
const p = document.createElement('p');

const title = document.createTextNode(data[site]['title']);

p.appendChild(title);
elem.appendChild(p);

)i

// return the generated output for rendering...
return output;

}

= we might then abstract this further with separate functions and logic
* e.g. render updates, element building, validation &c.

Cordova & React Native - Firebase Auth

Cordova app usage - clear data

= as a user logs out of the app
* need a function to delete the rendered content

° eg

// check child nodes relative to passed element

function clearData(elem) {
// check passed element for child nodes

while (elem.firstChild) {
// remove child...
elem.removeChild(elem.firstChild);

}

= checks passed element for child nodes
* while they exist, simply remove them from the Ul
* deletes the required app content

Cordova & React Native - Firebase Auth

React Native - app usage

= various options for adding authentication to a React Native app

= for Firebase authentication, we may consider the following options
* Firebase
* React Native Firebase

= React Native Firebase offers a complete solution for working with Firebase
services

= e.g. React Native Firebase includes a starter boilerplate app
* includes support for each service available with minimal configuration

= we may also consider OAuth 2.0 options, e.g.
* React Native OAuth

https://www.npmjs.com/package/firebase
https://rnfirebase.io/
https://github.com/fullstackreact/react-native-oauth

React Native - fetching data

HTML5 Fetch API - intro

= React Native also provides support for the developing HTMLS5 Fetch API

= also use other JS libraries such as axios or standard XMLHttpRequest
* no CORS (cross-origin resource sharing) issues with React Native

= use for network based queries, API requests, and so on...

= start with a simple query structure with fetch

fetch('https://your-server/api/getnotes.json')

= Fetch API with return a promise
* we can then chain to then()
* or perhaps use with async or await using ESé JavaScript

= might also add a second paremeter to this fetch query

fetch('https://your-server/api/getnotes.json', {
method: 'POST',

headers: {

}
body: JSON.stringify({

b
1y

React Native - fetching data

HTMLS Fetch API - working with the data

= response from a Fetch request will return a Blob
= response contains metadata

= access return data using a promise chain &c.

fetch('https://your-server/api/getnotes.json')
.then(result => result.json())
.then(yourData => this.setState({
yourData
b
)

.catch(error => {

console.error (error) ;

)i

Mobile Desigh & Development - Authentication

Fun Exercise

Four apps with variant login and logout designs,

= Login designs - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/login/

e Animation
e Colour

e Slide

e Transition

For each design, consider the following

= ease of use
* e.g. recognition of usage, options, variant logins...
= did aesthetics help with login options?

= from a developer perspective
* what is required as the user logs into the app or service?
e what is the relationship between the login option and app's data?

= which login option do you find intuitive?
* which do you prefer?

~ |10 minutes

React Native - navigation

intro to navigator

= React Native was initially released in 2015
* jt came with a default navigator component to help structure internal navigation

e structured stack control and management
= community development and usage has moved towards various open
project
= a popular option is the package react-navigation
e available from NPM

= basic navigator components are stack-based
* similar to OnsenUl, jQuery Mobile navigation &c.

= such components use a standard screen stack for navigating through an
application

® as a user navigates to a new screen
* the navigator will push it onto the stack

= as they navigate back
* a view &c. will simply be popped from the stack

React Native - navigation

basic usage - part |

= create a new app with React Native,

react-native init BasicAppNavigation

= then install react-navigation community package

yarn add react-navigation

or

npm install react-navigation --save

React Native - navigation

basic usage - part 2

= React Navigation designed to meet many different navigation requirements
e it uses a concept of different Navigators to setup apps

= start by importing package into App. Jjs
import { createStackNavigator, createAppContainer } from 'react-navigation';

= then set the required file for our configuration of the routing

import RootStack from './config/routes';

React Native - navigation

basic usage - part 3

= in the config folder of our src directory
* add a routes. js file to store details of screens and routes

import HomeScreen from '../screens/homescreen';
import DataScreen from '../screens/datascreen’;

import { createStackNavigator } from 'react-navigation';

const RootStack = createStackNavigator(

{

Home: HomeScreen,
Data: DataScreen
// Login: LoginScreen,
// Logout: LogoutScreen
I

initialRouteName: 'Home',

}
)i

export default RootStack;

= import required screens and their content and structure
= use screens as part of the routes for the app's navigation

= export the routes for use within our app

React Native - navigation

basic usage - part 4

= output a dynamic title for each screen navigation
* define a static property, navigationOptions
* add to class for each screen component

// define header title for screen

static navigationOptions = {
title: "Ancient Sites"”

}

= might also set this as dynamic to accept a props for each navigation request

// define header title for screen - add params
static navigationOptions = ({ navigation }) => ({

title: “Sites - ${navigation.state.params.cards}"

19

React Native - navigation

basic usage - part 5

= add a component, such as a button, to allow us to call the navigate
function
* addto render () method in homescreen

<Button

title="View Data"

onPress={() => this.props.navigation.navigate('Data’', { cards: 'Egypt' })}
/>

= pass an argument for the required screen name
* defined in the config for the routes

= we might pass a parameter for name of screen &c. to next screen

= e.g. accessed and used for title of screen

// define header title for screen - add params
static navigationOptions = ({ navigation }) => ({
title: “Sites - ${navigation.state.params.cards}"

19

Image - React Native

navigation - part |

Carrier ¥ 8:25 PM L __

Home Screen

Navigate to CardScreen

React Native - navigation

Image - React Native

navigation - part 2

Carrier ¥ 8:25 PM L __

< Back Chosen cards - Egypt

Navigate to Home Screen

React Native - navigation

Navigation & Usage

basic flows and concepts

= we may use navigation with various flows and app types
= eg

e stack navigation

* tab bars

e sliders

* modals

* splashscreens...

React Native - navigation & data

initial app structure

= combine navigation and data usage
* react native navigation with Firebase data loading

= in addition to standard directories
* android, i0os, node _modules

" app structure with components, routes, screens...

| -- components
| -- config

| -- screens

|__ App.js

|

|

|

[| -- services
|

[index.js

Image - React Native

navigation & data - home

7:48 -

Ancient Sites

Welcome to Ancient Sites

View Data

React Native - navigation & data - home

Image - React Native

navigation & data - cards

7:49

)
i

< Back Sites - Egypt

Abu Simbel

kingdom: upper
location: aswan governorate
coordinates

latitude: 22.336823
longitude: 31.625532

Karnak

kingdom: upper
location: luxer governorate
coordinates

latitude: 25.719595
longitude: 32.655807

React Native - navigation& data - cards

React Native - navigation & data

initial app structure - navigation

= navigation structure is defined using routes

|-- src
[| -- config

[| |_ routes.js

= app screens are defined in JavaScript files in screens directory
* one file per screen

|-- sre
[| -- screens
| | _ datascreen.js

|
[| |_ homescreen.js
|

React Native - navigation & data

initial app structure - card component

= we may then add specific structure for data output
e card output for this app...
* addto components/card. js

|-- srec
[| -- components

[| | _ card.js

React Native - navigation & data

initial app structure - data & services

= data logic for working with Firebase
* addto services directory

" api.js
* nitialise APls

 define listeners...

» firebase.]js

* add specific logic, config &c. for Firebase service

|-- sre

[| -- services

| | |_ api.js

[| | _ firebase.js
|

Mobile Desigh & Development - Navigation
Fun Exercise

Four apps with variant navigation designs,

= Navigation designs -
http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/navigation/
* reservations
* shopping
* smart home
* travel passes

For each design, consider the following

= ease of use
* e.g. recognition of usage, options...

= pavigation options presented to the user
* implicit, explicit...

= from a developer perspective
* how would you manage the navigation routes?
e are there any reset options for navigation?

~ |10 minutes

Cross-platform - navigation & data

app structure - intro

= define required structure for sample app, e.g.
* components
* config
* screens

® services

= carefully note available paths and routes through app

= how are routes modified for different users
e quthenticated
e public

= parameters & props within the app
* values passed from one component to another
e values passed from one screen to another

= reset options for an app's navigation

= specifics for each OS, e.g.
e jOS tab bar
e Android FABs, back button...

Cross-platform - navigation & data

app structure - public and auth routes

= a more detailed example might include multiple navigation paths
* paths relative to user authentication, data, options...
* e.g. app loads with Splashscreen, then redirects to Home Screen.

= from the Home Screen
* a user has option to follow public or authenticated routes
* each route will require navigation support

= authenticated route may contain a minimum set of screens, e.g.
* logout
* user

= public route will often comprise bulk of app's screens, e.g.
* login
* data such as a rendering of data store records &c.
* search
* timeline
* maps

= some crossover between public and authenticated routes

= authenticated user may gain extra features, e.g.
* access to specific data for their personal account
* options such as messaging and customisation.

Image - Navigation

user auth

public
SPLASH SCREEN
auth
L 4
l E »| HOME SCREEN
—
| ‘
LOGOUT LOGIN SCREEN

| |

~—— USER SCREEN

Navigation - user auth

Image - Navigation

app routes

GAHDS HOUTE SPLASH SCREEN
——— MAF HOUTE

— TIMELINE AQUTE

~————» HOME SCREEN [f——

v

MAP SCREEN CARDS SCREEN TIMELINE SCREEN

A o~

| CARDSCREEN [¢—————

Navigation - app routes

Image - Navigation

paths and stacks

CAHDS STACK

RESET
HOME SCREEN |[¢——

CARDS SCREEN

CARD SCREEN

TIMELINE SCREEN |——

Navigation - stack example - cards

Image - Navigation

paths and stacks

————— MAP STACK

RESET
HOME SCREEN f4———

L

v

MAP SCREEN

-

b J

CARD SCREEN

L

v

CARDS SCREEN ————

Navigation - stack example - map

References

= React Native
* Firebase NPM package
e React Native Firebase
* React Navigation
* React Native OAuth

= Various
* Axios JS library
e Firebase
* Firebase - database rules
* Firebase Docs - DataSnapshot
e Firebase docs - on () events
* Google's Cloud Platform
e MDN - Fetch API
o XMLHttpRequest
e Yarn - Firebase

https://www.npmjs.com/package/firebase
https://rnfirebase.io/
file:///Users/ancientlives/Dropbox/teaching/course-notes/cs/422-mobile/2019/comp422-week13.html
https://github.com/fullstackreact/react-native-oauth
https://www.npmjs.com/package/axios
https://firebase.google.com/
https://firebase.google.com/docs/database/security/quickstart
https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot
https://firebase.google.com/docs/reference/js/firebase.database.Reference#on
https://cloud.google.com/shell/docs/features#code_editor
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://yarnpkg.com/en/package/firebase

