
Comp 322/422 - Software Development for Wireless
and Mobile Devices

Fall Semester 2019 - Week 13

Dr Nick Hayward

Cordova & React - Data - Firebase

listener events - intro

for subscriptions and updates

Firebase provides a few different events

for the on() method, we may initially consult the following documentation

Firebase docs - on() events

need to test various listeners for datastore updates

https://firebase.google.com/docs/reference/js/firebase.database.Reference#on

Cordova & React - Data - Firebase

listener events - child_removed event

add a subscription for event updates

as a child object is removed from the data store.

child_removed event may be added as follows,

// - listen for child_removed event relative to current ref path in DB

db.ref('egypt/ancient_sites/').on('child_removed', (snapshot) => {

 console.log('child removed = ', snapshot.key, snapshot.val());

});

Cordova & React - Data - Firebase

listener events - child_changed event

also listen for the child_changed event

relative to the current path passed to ref()
e.g.

// - listen for child_changed event relative to current ref path in DB

db.ref('egypt/ancient_sites/').on('child_changed', (snapshot) => {

 console.log('child changed = ', snapshot.key, snapshot.val());

});

Cordova & React - Data - Firebase

listener events - child_added event

another common event is adding a new child to the data store

a user may create and add a new note or to-do item...

e.g. new child added to specified reference

// - listen for child_added event relative to current ref path in DB

db.ref('egypt/ancient_sites/').on('child_added', (snapshot) => {

 console.log('child added = ', snapshot.key, snapshot.val());

});

Mobile Design & Development - Data Usage

Fun Exercise

A single app, multiple views

Todo - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/todo/

For each app, consider the following

initial data preparation

data loading as app starts and renders home screen

data manipulation and updates

data validation and integrity

~ 10 minutes

Cordova & React Native - Authentication

Firebase - setup authentication

part of using authentication with Firebase

need to explicitly configure this option in the Console Dashboard

need to setup the sign-in method for a particular database

select various options and providers, including

email and password

phone

Google

Facebook

Twitter

GitHub

and Anonymous

Image - Firebase

authentication options

Firebase - auth options

Cordova & React Native - Firebase Auth

Cordova Login Form

HTML for this type of form might be as follows,

<form id="fb-login">

 <input type="text" value="add your username" />

 <input type="password" />

 <button id="submit-login">login</button>

</form>

for single sign-in, e.g. Google, add a login button

<button id="submit-login">login</button>

Cordova & React Native - Firebase Auth

Cordova - test form logic

then add some initial JavaScript logic

test the form and the submit login button

need to test a click event listener for the button

define a callback for successful login and error handling

document.getElementById('submit-login').addEventListener('click', () => {

 console.log('login button clicked');

});

Cordova & React Native - Firebase Auth

Auth routing

another requirement for authentication

correct routing of the authentication request

if a user's login is successful

they need to be redirected back to the app

if a user's login is unsuccessful

user may be redirected back to the login page

user may be shown an appropriate error message

another consideration for routing

authenticated access to an app's content

user should be able to view all public material

plus any material appropriate to their authenticated status

Cordova & React Native - Firebase Auth

Firebase Auth - sign-in method

Firebase authentication requires initial configuration of settings

configure and update using online console

plus various properties defined in the host app

add required sign-in methods

need to modify the default config to enable this feature

in the Firebase console
select Authentication in left menu for required database
select tab for Sign-in Method - provides various options for user authentication

start by selecting Google authentication
enable authentication service

Cordova & React Native - Firebase Auth

Firebase Auth - provider

in JavaScript config file for Firebase

need to define the required provider for our app

e.g. for Google sign-in method on the Firebase console

need to define a provider for this service in our app

// AUTH - define provider

const googleProvider = new firebase.auth.GoogleAuthProvider();

usage is defined in the Firebase docs,

Firebase Auth docs - Google Provider

we may also see similar examples for Facebook, GitHub, Twitter, &c.

https://firebase.google.com/docs/reference/js/firebase.auth.GoogleAuthProvider

Cordova & React Native - Firebase Auth

Firebase Auth - auth state change

Firebase provides various methods for working with authentication

relative to firebase object in our app's JavaScript

we may call auth() with various additional methods

allows us to check a user's login state

e.g. check state of a user's authentication request and return

// provides listener for user authenication

// checks if a user is logged in or not...

firebase.auth().onAuthStateChanged((user) => {

 if (user) {

 console.log('user logged in');

 } else {

 console.log('user logged out');

 }

});

this example provides a listener

logs to the console the state of user logins to the application

as the app starts

initially see result of query to Firebase for current user's login state

prevents unauthorised access to restricted data &c.

helps reduce login requests to remote service...

Cordova & React Native - Firebase Auth

Firebase Auth - auth login

then call the following function

starts login process for Google authentication

// start login call to return sign-in...

const startLogin = () => {

 return firebase.auth().signInWithRedirect(googleProvider);

};

if a user is not currently logged in

function will show a screen with option to login

e.g. with Google account...

the app's auth state will again be checked

test this login call with the login button in our app

e.g.

document.getElementById('submit-login').addEventListener('click', startLogin);

Cordova & React Native - Firebase Auth

Firebase Auth - auth login

a successful login will redirect the user back to the app

auth state listener will be updated, e.g. log to console

successful login may be persisted as needed

we may also check authenticated users in app's Firebase console

select the Authentication option

then the Users tab

lists all of the currently authenticated users for the app

e.g. successful user logins

Cordova & React Native - Firebase Auth

Firebase Auth - auth logout

to allow a user to logout, start by adding an explicit logout button

e.g.

<button id="submit-logout">logout</button>

we may set this button to only show when a user is logged in

then hide after logging out...

button will be called with a standard event listener

executes a logout function

// start logout call to return sign-out...

const startLogout = () => {

 return firebase.auth().signOut();

};

Cordova & React Native - Firebase Auth

Cordova app usage

we may now allow a user to login and logout of the application

e.g. with the Google provider service with Firebase

we need to setup our example app to use the authenticated status

e.g. authentication relative to permissions and access

define what an authenticated user may access and view within the app

need to define and setup specific requirements for Cordova app

e.g. plugins, config, app usage...

Cordova & React Native - Firebase Auth

Cordova app usage - initial Firebase setup

after creating a Firebase app & adding authentication options

e.g. Google Sign-in

need to enable specific native SDK support in Firebase

e.g. setup an Android app for the hosted Firebase project

in the Settings options for the current Firebase project

add any require apps in the Your App section

gives us the option to add support for Firebase in various apps

e.g. Android, iOS, and Web app

select option to add Android support, and complete required fields, e.g.

app nickname - basic-fbauth
package name - com.ancientlives.fbauth
...

Cordova & React Native - Firebase Auth

Cordova app usage - enable Firebase Dynamic Links

a notable difference between Firebase Authentication with web and

Cordova

the use of a redirect instead of the expected popup

Firebase requires each project to enable Dynamic Links

permits an app to redirect a user's authentication and custom token

further details may be found at the following URL,

https://firebase.google.com/docs/dynamic-links/

use the following link to select a project to use with Dynamic Links

https://console.firebase.google.com/project/_/durablelinks/links/

after adding Dynamic Links

need to record domain created for current Firebase project, e.g.

https://myproject.page.link

Cordova & React Native - Firebase Auth

Cordova app usage - setup app

after creating a Cordova app, adding support for the required platforms...

need to install the following plugins for authentication support

plugin for build info (app name, ID...)

cordova plugin add cordova-plugin-buildinfo --save

plugin handles Universal Links (Android app link redirects)

cordova plugin add cordova-universal-links-plugin --save

plugin handles opening secure browser views on iOS/Android mobile devices

cordova plugin add cordova-plugin-browsertab --save

plugin handles opening a browser view in older versions of iOS and Android

cordova plugin add cordova-plugin-inappbrowser --save

plugin handles deep linking through Custom Scheme for iOS

& adds *com.firebase.cordova* in an iOS bundle ID...

cordova plugin add cordova-plugin-customurlscheme --variable \

 URL_SCHEME=com.firebase.cordova --save

Cordova & React Native - Firebase Auth

Cordova app usage - update config.xml

then, we need to update config.xml to work with Dynamic Links

e.g.

<universal-links>

 <host name="myproject.page.link" scheme="https" />

 <host name="myproject.firebaseapp.com" scheme="https">

 <path url="/__/auth/callback" />

 </host>

</universal-links>

Cordova & React Native - Firebase Auth

Cordova app usage - update for Android

specific to an Android app

need to update the manifestWriter.js file in the following install directory

./plugins/cordova-universal-links-plugin/hooks/lib/android/

need to update it as follows

from

var pathToManifest = path.join(cordovaContext.opts.projectRoot,

'platforms', 'android', 'cordovaLib', 'AndroidManifest.xml');

to

var pathToManifest = path.join(

 cordovaContext.opts.projectRoot,

 'platforms',

 'android',

 'app',

 'src',

 'main',

 'AndroidManifest.xml');

we may then add the required JS logic to the Cordova app

test authentication with Firebase and Google sign-in

Cordova & React Native - Firebase Auth

Cordova app usage - redirecting a user

as a user logs in and logs out of an application

need to ensure they are redirected correctly

to appropriate content, page, or screen for their authentication status

e.g. a user might be redirected to their account page after logging in

then to the home page upon logout

with explicit routing frameworks, we may define such pages or screens

including custom stack navigation...

we may also restrict access relative to log in status

e.g. user, editor, admin...

Cordova & React Native - Firebase Auth

Cordova app usage - user access

for a single page app

we may restrict certain content relative to a user's authentication status

a simple test of this status may be executed

test in the state listener for Firebase authentication

e.g.

// provides listener for user authenication

// checks if a user is logged in or not...

firebase.auth().onAuthStateChanged((user) => {

 if (user) {

 loginBtn.style.display = 'none';

 logoutBtn.style.display = 'inline';

 console.log('user logged in');

 } else {

 loginBtn.style.display = 'inline';

 logoutBtn.style.display = 'none';

 console.log('user logged out');

 }

});

now modifying value of display property for each button

updated relative to a user's authentication status

shows appropriate button to user dependent upon their auth state

we might show certain content and options for an authenticated user

or execute an async query for that user to the Firebase data store...

Cordova & React Native - Firebase Auth

Cordova app usage - app content

one option we may test is simply showing and hiding content

relative to a user's auth state

e.g. a user logs into the app

content is queried from the connected Firebase datastore

app's UI is then updated with this content

// provides listener for user authenication

// checks if a user is logged in or not...

firebase.auth().onAuthStateChanged((user) => {

 const output = document.getElementById('fb-content');

 if (user) {

 loginBtn.style.display = 'none';

 logoutBtn.style.display = 'inline';

 outputData(output);

 console.log('user logged in - data output');

 } else {

 loginBtn.style.display = 'inline';

 logoutBtn.style.display = 'none';

 clearData(output);

 console.log('user logged out - data output removed');

 }

});

Cordova & React Native - Firebase Auth

Cordova app usage - async data loading

as data is loaded asynchronously from Firebase

only loaded in app when a user has logged in successfully

e.g.

// get ref in db once

// call forEach() on return snapshot

// push values to local array

// unique id for each DB parent object is `key` property on snapshot

function loadData() {

 // get data from FB

 const data = db.ref('egypt/ancient_sites')

 .once('value')

 .then((snapshot) => {

 const sites = [];

 snapshot.forEach((siteSnapshot) => {

 sites.push({

 id: siteSnapshot.key,

 ...siteSnapshot.val()

 });

 });

 return sites;

 });

 // return data Promise

 return data;

}

Cordova & React Native - Firebase Auth

Cordova app usage - output data

then call the then() method in the outputData() function to update

the UI

e.g.

// prepare data from loadData() for rendering

function outputData(elem) {

 // use data Promise - append to DOM...

 const output = loadData().then((data) => {

 for (site in data) {

 const p = document.createElement('p');

 const title = document.createTextNode(data[site]['title']);

 p.appendChild(title);

 elem.appendChild(p);

 }

 });

 // return the generated output for rendering...

 return output;

}

we might then abstract this further with separate functions and logic

e.g. render updates, element building, validation &c.

Cordova & React Native - Firebase Auth

Cordova app usage - clear data

as a user logs out of the app

need a function to delete the rendered content

e.g.

// check child nodes relative to passed element

function clearData(elem) {

 // check passed element for child nodes

 while (elem.firstChild) {

 // remove child...

 elem.removeChild(elem.firstChild);

 }

}

checks passed element for child nodes

while they exist, simply remove them from the UI

deletes the required app content

Cordova & React Native - Firebase Auth

React Native - app usage

various options for adding authentication to a React Native app

for Firebase authentication, we may consider the following options

Firebase

React Native Firebase

React Native Firebase offers a complete solution for working with Firebase

services

e.g. React Native Firebase includes a starter boilerplate app

includes support for each service available with minimal configuration

we may also consider OAuth 2.0 options, e.g.

React Native OAuth

https://www.npmjs.com/package/firebase
https://rnfirebase.io/
https://github.com/fullstackreact/react-native-oauth

React Native - fetching data

HTML5 Fetch API - intro

React Native also provides support for the developing HTML5 Fetch API

also use other JS libraries such as axios or standard XMLHttpRequest

no CORS (cross-origin resource sharing) issues with React Native

use for network based queries, API requests, and so on...

start with a simple query structure with fetch

fetch('https://your-server/api/getnotes.json')

Fetch API with return a promise

we can then chain to then()
or perhaps use with async or await using ES6 JavaScript

might also add a second paremeter to this fetch query

fetch('https://your-server/api/getnotes.json', {

 method: 'POST',

 headers: {

 ...

 },

 body: JSON.stringify({

 ...

 })

})

React Native - fetching data

HTML5 Fetch API - working with the data

response from a Fetch request will return a Blob

response contains metadata

access return data using a promise chain &c.

fetch('https://your-server/api/getnotes.json')

 .then(result => result.json())

 .then(yourData => this.setState({

 yourData

 })

)

 .catch(error => {

 console.error(error);

 });

Mobile Design & Development - Authentication

Fun Exercise

Four apps with variant login and logout designs,

Login designs - http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/login/

Animation

Colour

Slide

Transition

For each design, consider the following

ease of use

e.g. recognition of usage, options, variant logins...

did aesthetics help with login options?

from a developer perspective

what is required as the user logs into the app or service?

what is the relationship between the login option and app's data?

which login option do you find intuitive?

which do you prefer?

~ 10 minutes

React Native - navigation

intro to navigator

React Native was initially released in 2015

it came with a default navigator component to help structure internal navigation

structured stack control and management

community development and usage has moved towards various open

project

a popular option is the package react-navigation

available from NPM

basic navigator components are stack-based

similar to OnsenUI, jQuery Mobile navigation &c.

such components use a standard screen stack for navigating through an

application

as a user navigates to a new screen

the navigator will push it onto the stack

as they navigate back

a view &c. will simply be popped from the stack

React Native - navigation

basic usage - part 1

create a new app with React Native,

react-native init BasicAppNavigation

then install react-navigation community package

yarn add react-navigation

or

npm install react-navigation --save

React Native - navigation

basic usage - part 2

React Navigation designed to meet many different navigation requirements

it uses a concept of different Navigators to setup apps

start by importing package into App.js

import { createStackNavigator, createAppContainer } from 'react-navigation';

then set the required file for our configuration of the routing

import RootStack from './config/routes';

React Native - navigation

basic usage - part 3

in the config folder of our src directory

add a routes.js file to store details of screens and routes

import HomeScreen from '../screens/homescreen';

import DataScreen from '../screens/datascreen';

import { createStackNavigator } from 'react-navigation';

const RootStack = createStackNavigator(

 {

 Home: HomeScreen,

 Data: DataScreen

 // Login: LoginScreen,

 // Logout: LogoutScreen

 },

 {

 initialRouteName: 'Home',

 }

);

export default RootStack;

import required screens and their content and structure

use screens as part of the routes for the app's navigation

export the routes for use within our app

React Native - navigation

basic usage - part 4

output a dynamic title for each screen navigation

define a static property, navigationOptions
add to class for each screen component

// define header title for screen

static navigationOptions = {

 title: "Ancient Sites"

}

might also set this as dynamic to accept a props for each navigation request

// define header title for screen - add params

static navigationOptions = ({ navigation }) => ({

 title: `Sites - ${navigation.state.params.cards}`

})

React Native - navigation

basic usage - part 5

add a component, such as a button, to allow us to call the navigate
function

add to render() method in homescreen

<Button

 title="View Data"

 onPress={() => this.props.navigation.navigate('Data', { cards: 'Egypt' })}

/>

pass an argument for the required screen name

defined in the config for the routes

we might pass a parameter for name of screen &c. to next screen

e.g. accessed and used for title of screen

// define header title for screen - add params

static navigationOptions = ({ navigation }) => ({

 title: `Sites - ${navigation.state.params.cards}`

})

Image - React Native

navigation - part 1

React Native - navigation

Image - React Native

navigation - part 2

React Native - navigation

Navigation & Usage

basic flows and concepts

we may use navigation with various flows and app types

e.g.

stack navigation

tab bars

sliders

modals

splashscreens...

React Native - navigation & data

initial app structure

combine navigation and data usage

react native navigation with Firebase data loading

in addition to standard directories

android, ios, node_modules

app structure with components, routes, screens...

.

|-- src

| |-- components

| |-- config

| |-- screens

| |-- services

| |__ App.js

|__ index.js

Image - React Native

navigation & data - home

React Native - navigation & data - home

Image - React Native

navigation & data - cards

React Native - navigation& data - cards

React Native - navigation & data

initial app structure - navigation

navigation structure is defined using routes

.

|-- src

| |-- config

| | |__ routes.js

| ...

app screens are defined in JavaScript files in screens directory

one file per screen

.

|-- src

| |-- screens

| | |__ datascreen.js

| | |__ homescreen.js

| ...

React Native - navigation & data

initial app structure - card component

we may then add specific structure for data output

card output for this app...

add to components/card.js

.

|-- src

| |-- components

| | |__ card.js

| ...

React Native - navigation & data

initial app structure - data & services

data logic for working with Firebase

add to services directory

api.js
initialise APIs

define listeners...

firebase.js
add specific logic, config &c. for Firebase service

.

|-- src

| |-- services

| | |__ api.js

| | |__ firebase.js

| ...

Mobile Design & Development - Navigation

Fun Exercise

Four apps with variant navigation designs,

Navigation designs -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/navigation/

reservations

shopping

smart home

travel passes

For each design, consider the following

ease of use

e.g. recognition of usage, options...

navigation options presented to the user

implicit, explicit...

from a developer perspective

how would you manage the navigation routes?

are there any reset options for navigation?

~ 10 minutes

Cross-platform - navigation & data

app structure - intro

define required structure for sample app, e.g.

components

config

screens

services

carefully note available paths and routes through app

how are routes modified for different users

authenticated

public

...

parameters & props within the app

values passed from one component to another

values passed from one screen to another

reset options for an app's navigation

specifics for each OS, e.g.

iOS tab bar

Android FABs, back button...

Cross-platform - navigation & data

app structure - public and auth routes

a more detailed example might include multiple navigation paths

paths relative to user authentication, data, options...

e.g. app loads with Splashscreen, then redirects to Home Screen.

from the Home Screen

a user has option to follow public or authenticated routes

each route will require navigation support

authenticated route may contain a minimum set of screens, e.g.

logout

user

public route will often comprise bulk of app's screens, e.g.

login

data such as a rendering of data store records &c.

search

timeline

maps

...

some crossover between public and authenticated routes

authenticated user may gain extra features, e.g.

access to specific data for their personal account

options such as messaging and customisation.

Image - Navigation

user auth

Navigation - user auth

Image - Navigation

app routes

Navigation - app routes

Image - Navigation

paths and stacks

Navigation - stack example - cards

Image - Navigation

paths and stacks

Navigation - stack example - map

References

React Native

Firebase NPM package

React Native Firebase

React Navigation

React Native OAuth

Various

Axios JS library

Firebase

Firebase - database rules

Firebase Docs - DataSnapshot

Firebase docs - on() events

Google's Cloud Platform

MDN - Fetch API

XMLHttpRequest

Yarn - Firebase

https://www.npmjs.com/package/firebase
https://rnfirebase.io/
file:///Users/ancientlives/Dropbox/teaching/course-notes/cs/422-mobile/2019/comp422-week13.html
https://github.com/fullstackreact/react-native-oauth
https://www.npmjs.com/package/axios
https://firebase.google.com/
https://firebase.google.com/docs/database/security/quickstart
https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot
https://firebase.google.com/docs/reference/js/firebase.database.Reference#on
https://cloud.google.com/shell/docs/features#code_editor
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://yarnpkg.com/en/package/firebase

