
Comp 322/422 - Software Development for
Wireless and Mobile Devices

Fall Semester 2019 - Week 14

Dr Nick Hayward

Final Assessment

Course total = 40%

continue to develop your app concept and prototypes

develop application using any of the technologies taught during the course

again, combine technologies to best fit your mobile app

produce a working app

as far as possible try to create a fully working app

explain any parts of the app not working...

explain choice of technologies for mobile app development

e.g. data stores, APIs, modules, &c.

explain design decisions

outline what you chose and why?

what else did you consider, and then omit? (again, why?)

which concepts could you abstract for easy porting to other

platform/OS?

describe patterns used in design of UI and interaction

end of semester final assessment

presentations and demo due Tuesday 3rd or Thursday 5th December 2019 @
2.30pm

final report due Saturday 14th December 2019 @ 2.30pm

final report outline
coursework details
PDF

http://csteach422.github.io/coursework/#assessment4
http://csteach422.github.io/assets/docs/2019/comp422-final-report-outline-2019.pdf

Fun Exercise - Navigation Stacks

app routes

Navigation - app routes - search

Consider the following relative to the outline of

stacks for the app,

How do we reconcile the option to switch to a search screen?

i.e. how will it change the requirements for each of the stacks?

What are the benefits of multiple stacks?

What role would a reset route play in easing stack navigation?

what are the benefits of limiting user routes relative to stack

navigation?

could we improve app usage and performance by restricting certain routes?

~ 10 minutes...

Cross-platform - modular design

ES Module pattern - intro

React Native modules use ES6 module system

Cordova may also use this module structure

simpler and easier to work with than CommonJS

in most examples...

JavaScript strict mode is enabled by default

strict mode helps with language usage - check for poor usage

stops hoisting of variables

variables must be declared

function parameters must have unique name

assignment to read-only properties throws errors

...

modules are exported with export statements

modules are imported with import statements

Cross-platform - modular design

ES Module pattern - export statements

ES6 modules are individual files

expose an API using export statements

declarations are scoped to the local module

e.g. variables declared inside a module

not available to other modules

need to be explicitly exported in module API

need to be imported for usage in another module

export statements may only be added to top-level of a module

e.g. not in function expression *&c.

cannot dynamically define and expose API using methods

unlike CommonJS module system - Node.js &c.

Cross-platform - modular design

ES Module pattern - export default

common option is to export a default binding, e.g.

export default `hello world`

export default {

 name: 'Alice',

 place: 'Wonderland'

}

export default [

 'Alice', 'Wonderland'

]

export default function name() {

 ...

}

Cross-platform - modular design

ES Module pattern - bindings

ES modules export bindings

not values or references

e.g. an export of count variable from a module

count is exported as a binding

export is bound to count variable in the module

value is subject to changes of count in module

offers flexibility to exported API

e.g. count might originally be bound to an object

then changed to an array...

other modules consuming this export

they would see change as count is modified

modified in module and exported...

n.b. take care with this usage pattern

useful for counters, logs &c.

can cause issues with API usage for a module

Cross-platform - modular design

ES Module pattern - named export

we may define bindings for export

instead of assigning properties to implicit export object

e.g.

export let counter = 0

export const count = () => counter++

cannot refactor this example for named export

syntax error will be thrown

e.g.

let counter = 0

const count = () => counter++

export counter // this will return syntax error

export count

rigid syntax helps with analysis, parsing

static analysis for ES modules

Cross-platform - modular design

ES Module pattern - export lists

lists provide a useful solution to previous refactor issue

syntax for list export easy to parse

export lists of named top-level declarations

variables &c.

e.g.

let counter = 0

const count = () => counter++

export { counter, count }

also rename binding for export, e.g.

let counter = 0

const count = () => counter++

export { counter, count as increment }

define default with export list, e.g.

let counter = 0

const count = () => counter++

export { counter as default, count as increment }

Cross-platform - modular design

ES Module pattern - export from ...

expose another module's API using export from...
i.e. a kind of pass through...

e.g.

export { increment } from './myCounter.js'

bindings are not imported into module's local scope

current module acts as conduit, passing bindings along

export/import chain...

module does not gain direct access to export from ...
bindings

e.g. if we call increment it will throw a ReferenceError

aliases are also possible for bindings with export from...
e.g.

export { increment as addition } from './myCounter.js'

Cross-platform - modular design

ES Module pattern - import statements

use import to load another module

import statement are only allowed in top level of module

definition

same as export statements

helps compilers simplify module loading &c.

import default exports

give default export a name as it is imported

e.g.

import counter from './myCounter.js'

importing binding to counter

syntax different from declaring a JS variable

Cross-platform - modular design

ES Module pattern - import named exports

also imported any named exports

import more than just default exports

named import is wrapped in braces

e.g.

import { increment } from './myCounter.js'

also import multiple named exports

e.g.

import { increment, decrement } from './myCounter.js'

import aliases are also supported

e.g.

import { increment as addition } from './myCounter.js'

combine default with named

e.g.

import counter, { increment } from './myCounter.js'

Cross-platform - modular design

ES Module pattern - import with wildcard

we may also import using the wildcard operator

e.g.

import * as counter from './myCounter.js'

counter.increment()

name for wildcard import acts like object for module

call module exports on wildcard

import * as counter from './myCounter.js'

counter.increment()

common pattern for working with libraries &c.

Cross-platform - modular design

ES Module pattern - benefits & practical usage

offers ability to explicitly publish an API

keeps module content local unless explicitly exported

similar function to getters and setters

explicit way in and out of modules

explicit options for reading and updating values...

code becomes simpler to write and manage

module offers encapsulation of code

import binding to variable, function &c.

then use it as normal...

removes need for encapsulation in main JS code

e.g. with patterns such as IIFE...

n.b. need to be careful how we use modules

e.g. priority for access, security, testing &c.

all now moved to individual modules...

Mobile Design & Development - Modular
Designs

Fun Exercise

Four apps with variant designs,

Modular designs -

http://linode4.cs.luc.edu/teaching/cs/demos/422/gifs/modular/

Anatomy

Home Design

Reminders

Watches

For each design, consider the following

define perceived modules for each app

where might you use a module?

what type of modules can you define in each app?

e.g. logical, structural, design, performance...

from a developer perspective

consider primary modular groupings

does each module purpose help with testing?

can each module be decoupled from app?
e.g. test and use outside of current app...

~ 10 minutes

JavaScript - Prototype

intro

along with the following traits of JS (ES6 ...),

functions as first-class objects

versatile and useful structure of functions with closures

combine generator functions with promises to help manage async code

async & await...

prototype object may be used to delegate the search for a particular

property

a prototype is a useful and convenient option for defining properties

and functionality

accessible to other objects

a prototype is a useful option for replicating many concepts in

traditional object oriented programming

JavaScript - Prototype

understanding prototypes

in JS, we may create objects, e.g. using object-literal notation

a simple value for the first property

a function assigned to the second property

another object assigned to the third object

let testObject = {

 property1: 1,

 prooerty2: function() {},

 property3: {}

}

as a dynamic language, JS will also allow us to

modify these properties

delete any not required

or simply add a new one as necessary

this dynamic nature may also completely change the properties in a

given object

this issue is often solved in traditional object-oriented languages

using inheritance

in JS, we can use prototype to implement inheritance

JavaScript - Prototype

basic idea of prototypes

every object can have a reference to its prototype

a delegate object with properties - default for child objects

JS will initially search the onject for a property

then, search the prototype

i.e. prototype is a fall back object to search for a given property &c.

const object1 = { title: 'the glass bead game' };

const object2 = { author: 'herman hesse' };

console.log(object1.title);

Object.setPrototypeOf(object1, object2);

console.log(object1.author);

in the above example, we define two objects

properties may be called with standard object notation

can be modified and mutated as standard

use setPrototypeOf() to set and update object's prototype

e.g. object1 as object to update

object2 as the object to set as prototype

if requested property is not available on object1
JS will search defined prototype...

author available as property of prototype for object1

demo - basic prototype

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype/

JavaScript - Prototype

prototype inheritance

Prototypes, and their properties, can also be inherited

creates a chain of inheritance...

e.g.

object1 has access to the prototype of its parent, object2

a property search against object1 will now include its own

prototype, object2
and its prototype as well, object3

output for object1.genre will return the value stored in the

property on object3

demo - basic set prototype

const object1 = { title: 'the glass bead game' };

const object2 = { author: 'herman hesse' };

const object3 = { genre: 'fiction' };

console.log(object1.title);

Object.setPrototypeOf(object1, object2);

Object.setPrototypeOf(object2, object3);

console.log(object1.author);

console.log(`genre from prototype chain = ${object1.genre}`); // use template lit

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-chain/

JavaScript - Prototype

object constructor & prototypes

object-oriented languages, such as Java and C++, include a class

constructor

provides known encapsulation and structuring

constructor is initialising an object to a known initial state...

i.e. consolidate a set of properties and methods for a class of

objects in one place

JS offers such a mechanism, although in a slightly different form to

Java, C++ &c.

JS still uses the new operator to instantiate new objects via

constructors

JS does not include a true class definition comparable to Java &c.

ES6 class is syntactic sugar for the prototype...

new operator in JS is applied to a constructor function

this triggers the creation of a new object

JavaScript - Prototype

prototype object

in JS, every function includes their own prototype object

set automatically as the prototype of any created objects

e.g.

//constructor for object

function LibraryRecord() {

 //set default value on prototype

 LibraryRecord.prototype.library = 'castalia';

}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

likewise, we may set a default method on an instantiated object's

prototype

demo - basic prototype object

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance/

JavaScript - Prototype

instance properties

as JS searches an object for properties, values or methods

instance properties will be searched before trying the prototype

a known order of precedence will work.

e.g.

//constructor for object

function LibraryRecord() {

 // set property on instance of object

 this.library = 'waldzell';

 //set default value on prototype

 LibraryRecord.prototype.library = 'castalia';

}

const bookRecord = new LibraryRecord();

console.log(bookRecord.library);

this refers directly to the newly created object

properties in constructor created directly on instantiated object

e.g. instance of LibraryRecord()

search for library property against object

do not need to search against prototype for this example

known side-effect

instantiate multiple objects with this constructor

each object gets its own copy of the constructor's properties & access to same
prototype

may end up with multiple copies of same properties in memory

if replication is required or likely

more efficient to store properties & methods against the prototype

demo - basic prototype object properties

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-instance-props/

JavaScript - Prototype

side effects of JS dynamic nature

JS is a dynamic language

properties can be added, removed, modified...

dynamic nature is true for prototypes

function prototypes

object prototypes

//constructor for object

function LibraryRecord() {

 // set property on instance of object

 this.library = 'waldzell';

}

// create instance of LibraryRecord - call constructor with `new` operator

const bookRecord1 = new LibraryRecord();

// check output of value for library property from constructor

console.log(`this library = ${bookRecord1.library}`);

// add method to prototype after object created

LibraryRecord.prototype.updateLibrary = function() {

 return this.retreat = 'mariafels';

};

// check prototype updated with new method

console.log(`this retreat = ${bookRecord1.updateLibrary()}`);

// then overwrite prototype - constructor for existing object unaffected...

LibraryRecord.prototype = {

 archive: 'mariafels',

 order: 'benedictine'

};

// create instance object of LibraryRecord...with updated prototype

const bookRecord2 = new LibraryRecord();

// check output for second instance object

console.log(`updated archive = ${bookRecord2.archive} and order = ${bookRecord2.o

// check output for second instance object - library

console.log(`second instance object - library = ${bookRecord2.library}`);

// check if prototype updated for first instance object - NO

console.log(`first instance object = ${bookRecord1.order}`);

demo - basic prototype dynamic

// manual update to prototype for first instance object still available

console.log(`this retreat2 = ${bookRecord1.updateLibrary()}`);

// check prototype has been fully overwritten - e.g. `updateLibrary()` no longer

try {

// updates to original prototype are overridden - error is returned for second in

console.log(`this retreat = ${bookRecord2.updateLibrary()}`);

 } catch(error) {

 console.log(`modified prototype not available for new object...\n ${error}`);

 }

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-dynamic/

JavaScript - Prototype

object typing via constructors

check function used as a constructor to instantiate an object

using constructor property

//constructor for object

function LibraryRecord() {

 //set default value on prototype

 LibraryRecord.prototype.library = 'castalia';

}

// create instance object for libraryRecord

const bookRecord = new LibraryRecord();

// output constructor for instance object

console.log(`constructor = ${bookRecord.constructor}`);

// check if function was constructor (use ternary conditional)

const check = bookRecord.constructor === LibraryRecord ? true : false;

// output result of check

console.log(check);

demo - basic constructor check

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-check-constructor/

JavaScript - Prototype

instantiate a new object using a constructor reference

use a constructor to create a new instance object

also use constructor() of new object to create another

object

second object is still an object of the original constructor

//constructor for object

function LibraryRecord() {

 //set default value on prototype

 LibraryRecord.prototype.library = 'castalia';

}

const bookRecord = new LibraryRecord();

const bookRecord2 = new bookRecord.constructor();

JavaScript - Prototype

achieving inheritance

Inheritance enables re-use of an object's properties by another

object

helps us efficiently avoid repetition of code and logic

improving reuse and data across an application

in JS, a prototype chain to ensure inheritance works beyond simply

copying prototype properties

e.g. a book in a corpus, a corpus in an archive, an archive in a library...

JavaScript - Prototype

inheritance with prototypes - part 1

inheritance in JS

create a prototype chain using an instance of an object as prototype for another
object

e.g.

SubClass.prototype = new SuperClass()

this pattern works as a prototype chain for inheritance

prototype of SubClass instance as an instance of SuperClass
prototype will have all the properties of SuperClass
SuperClass may also have properties from its superclass...

prototype chain created of expected inheritance

JavaScript - Prototype

inheritance with prototypes - part 2

e.g. inheritance achieved by setting prototype of Archive to

instance of Library object

//constructor for object

function Library() {

 // instance properties

 this.type = 'library';

 this.location = 'waldzell';

}

// constructor for Archive object

function Archive(){

 // instance property

 this.domain = 'gaming';

}

// update prototype to parent Libary - instance relative to parent & child

Archive.prototype = new Library();

// instantiate new Archive object

const archiveRecord = new Archive();

// check instance object - against constructor

if (archiveRecord instanceof Archive) {

 console.log(`archive domain = ${archiveRecord.domain}`);

}

// check instance of archiveRecord - instance of Library & Archive

if (archiveRecord instanceof Library) {

 // type property from Library

 console.log(`Library type = ${archiveRecord.type}`);

 // domain property from Archive

 console.log(`Archive domain = ${archiveRecord.domain}`);

}

JavaScript - Prototype

issues with overriding the constructor property

setting Library object as defined prototype for Archive
constructor

Archive.prototype = new Library();

connection to Archive constructor lost - we may check

constructor

// check constructor used for archiveRecord object

if (archiveRecord.constructor === Archive) {

 console.log('constructor found on Archive...');

} else {

 // Library constructor output - due to prototype

 console.log(`Archive constructor = ${archiveRecord.constructor}`);

}

Library constructor will be returned

n.b. may become an issue - constructor property may be used to check original
function for instantiation

demo - inheritance with prototype

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto/

JavaScript - Prototype

some benefits of overriding the constructor property

//constructor for object

function Library() {

 // instance properties

 this.type = 'library';

 this.location = 'waldzell';

}

// extend prototype

Library.prototype.addArchive = function(archive) {

 console.log(`archive added to library - ${archive}`);

 // add archive property to instantiate object

 this.archive = archive;

 // add property to Library prototype

 Library.prototype.administrator = 'knechts';

}

// constructor for Archive object

function Archive(){

 // instance property

 this.domain = 'gaming';

}

// update prototype to parent Libary - instance relative to parent & child

Archive.prototype = new Library();

// instantiate new Archive object

const archiveRecord = new Archive();

// call addArchive on Library prototype

archiveRecord.addArchive('mariafels');

// check instance object - against constructor

if (archiveRecord instanceof Archive) {

 console.log(`archive domain = ${archiveRecord.domain}`);

}

// check constructor used for archiveRecord object

if (archiveRecord.constructor === Archive) {

 console.log('constructor found on Archive...');

} else {

 console.log(`Archive constructor = ${archiveRecord.constructor}`);

 console.log(`Archive domain = ${archiveRecord.domain}`);

 console.log(`Archive = ${archiveRecord.archive}`);

 console.log(`Archive admin = ${archiveRecord.administrator}`);

demo - inheritance with prototype - updated

}

// check instance of archiveRecord - instance of Library & Archive

if (archiveRecord instanceof Library) {

 // type property from Library

 console.log(`Library type = ${archiveRecord.type}`);

 // domain property from Archive

 console.log(`Archive domain = ${archiveRecord.domain}`);

}

// instantiate another Archive object

const archiveRecord2 = new Archive();

// output instance object for second archive

console.log('Archive2 object = ', archiveRecord2);

// check if archiveRecord2 object has access to updated archive property...NO

console.log(`Archive2 = ${archiveRecord2.archive}`);

// check if archiveRecord2 object has access to updated adminstrator property...Y

console.log(`Archive2 administrator = ${archiveRecord2.administrator}`);

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/inheritance-proto2/

JavaScript - Prototype

configure object properties - part 1

each object property in JS is described with a property

descriptor

use such descriptors to configure specific keys, e.g.

configurable - boolean setting

true = property's descriptor may be changed and the property deleted

false = no changes &c.

enumerable - boolean setting

true = specified property will be visible in a for-in loop through object's
properties

value - specifies value for property (default is undefined)

writable - boolean setting

true = the property value may be changed using an assignment

get - defines the getter function, called when we access the

property

n.b. can't be defined with value and writable

set - defines the setter function, used whenever an assignment is

made to the property

n.b. can't be defined with value and writable

e.g. create following property for an object

archive.type = 'private';

archive
will be configurable, enumerable, writable

with a value of private

get and set will currently be undefined

JavaScript - Prototype

configure object properties - part 2

to update or modify a property configuration use built-in

Object.defineProperty() method

this method takes an object, which may be used to

define or update the property

define or update the name of the property

define a property descriptor object

e.g.

// empty object

const archive = {};

// add properties to object

archive.name = "waldzell";

archive.type = "game";

// define property access, usage, &c.

Object.defineProperty(archive, "access", {

 configurable: false,

 enumerable: false,

 value: true,

 writable: true

});

// check access to new property

console.log(`${archive.access}, access property available on the object...`);

/*

* check we can't access new property in loop

* - for..in iterates over enumerable properties

*/

for (let property in archive) {

 // log enumerable

 console.log(`key = ${property}, value = ${archive[property]}`);

}

/*

* plain object values not iterable...

* - returns expected TyoeError - archive is not iterable

*/

for (let value of archive) {

 // value not logged...

 console.log(value);

}

demo - configure object properties

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/object-properties/

JavaScript - Prototype

using ES Classes

ES6 provides a new class keyword

enables object creation and aida in inheritance

it's syntactic sugar for the prototype and instantiation of objects

e.g.

// class with constructor & methods

class Archive {

 constructor(name, admin) {

 this.name = name;

 this.admin = admin;

 }

 // class method

 static access() {

 return false;

 }

 // instance method

 administrator() {

 return this.admin;

 }

}

// instantiate archive object

const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with class

const nameCheck = archive.name === `Waldzell` ? archive.name : false;

// log archive name

console.log(`class archive name = ${nameCheck}`);

// call class method

console.log(Archive.access());

// call instance method

console.log(`archive administrator = ${archive.administrator()}`);

demo - basic ES Class

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-class/

JavaScript - Prototype

ES classes as syntactic sugar

classes in ES6 are simply syntactic sugar for prototypes.

a prototype implementation of previous Archive class, and

usage... -not* e.g.

// constructor function

function Archive(name, admin) {

 this.name = name;

 this.admin = admin;

 // instance method

 this.administrator = function () {

 return this.admin;

 }

 // add property to constructor

 Archive.access = function() {

 return false;

 };

}

// instantiate object - pass arguments

const archive = new Archive('Waldzell', 'Knechts');

// check parameter usage with ternary conditional...

const nameCheck = archive.name === `Waldzell` ? archive.name : false;

// output name check...

console.log(`prototype archive name = ${nameCheck}`);

// call constructor only method

console.log(Archive.access());

// call instance method

console.log(`archive administrator = ${archive.administrator()}`);

demo - basic Prototype equivalent

http://linode4.cs.luc.edu/teaching/cs/demos/424/prototype/basic-prototype-equivalent/

JavaScript - Proxy

intro

use a proxy to control access to another object

a surrogate relationship between the proxy and the object

proxy may be considered akin to a generalised getter and setter

whilst getters and setters may control access to a single object

property

a proxy enables generic handling of interactions

interactions may even include method calls relative to an object

we may use a proxy where we might otherwise use a getter and a

setter

proxy is considered broader and more powerful in its potential

implementation and usage

e.g.

a proxy may be used to add profiling support to an object

measure performance

autopopulate code properties

...

JavaScript - Proxy

creating a proxy - part 1

to create a proxy in JavaScript

use the default, built-in Proxy constructor

// plain object

const planet = {

 name: ['mercury'],

 codes: {

 iau: 'Me',

 unicode: 'U+263F'

 }

};

// proxy for passed target object - target = planet

const planetDetails = new Proxy(planet, {

 get: (target, key) => {

 return key in target ? target[key] :'planet does not exist...';

 },

 set: (target, key, value) => {

 key in target ? target[key].push(value) : 'key not found...';

 }

});

// check proxy access to target property

console.log(planetDetails.name);

// check proxy set against target property

// target = planet, key = name, value = earth

planetDetails.name = 'earth';

console.log(planetDetails.name);

JavaScript - Proxy

creating a proxy - part 2

in the previous example

we may access the object and its properties directly

but the proxy gives us extra utility

e.g for the getter and setter

we may check keys, values, &c.

control how the object is updated

we may also add basic logging, if necessary...

after defining the initial plain object, planet
we may then wrap it using the Proxy constructor

current proxy includes a getter and setter method

contains checks for required key in the original object

also choose how we would like to compute values, log usage and

return &c.

JavaScript - Proxy

proxy traps

in the previous example

we added a get and set trap for defined target object, planet

there are other traps we may use with a Proxy

e.g.

apply - activated for a function call
e.g. measuring performance

construct - activated for new keyword

enumerate - activated for for-in statements

getPrototypeOf - activated for getting prototype value

setPrototypeOf - activated for setting prototype value

these traps are in addition to existing get and set traps

there are also traps that we cannot override using a proxy

e.g.

equality operators - == and === and not equivalents

instanceof and typeof

JavaScript - Proxy

logging with proxies

use logging in development as a convenient tool for debugging and

checking code

output checks, and add debugging statements to various points

within our code

quickly start to add many such logging statements to our code

better option

considering abstraction and reuse of code

is to use a proxy for such logging

JavaScript - Proxy

custom proxy for logging - part 1

to improve our code reuse and abstraction

we may define a proxy for logging within an app.

e.g.

define a custom function, which accepts a target object

returns a new Proxy object with a getter and setter method

// logging with proxy - get and set traps defined

function logger(target) {

 return new Proxy(target, {

 get: (target, property) => {

 console.log(`property read - ${property}`);

 return target[property];

 },

 set: (target, property, value) => {

 console.log(`value '${value}' added to ${property}`);

 target[property] = value;

 }

 });

}

this is a custom logger

wraps passed target object in a proxy with defined getter and setter methods

JavaScript - Proxy

custom proxy for logging - part 2

we may then use this custom function as follows

// test object

let planet = {

 name: 'mercury'

};

// new planet object with proxy

planetLog = logger(planet);

// test getting - value for property returned by getter in logger() method...

console.log('default get = ', planetLog.name);

// test setting - value for property set against object

planet.code = 'Me';

in this example

we define the initial object

then create a new object with a proxy wrapper

this proxy includes the necessary logger

set for both the setter and getter methods

as we read a property

the get method will log access and return the requested data

as we set data

we log this update, and then update the target

JavaScript - Proxy

custom proxy for measuring performance - part 1

another appropriate use of a Proxy is to test performance for a

given function

we may wrap a function with a Proxy, and then apply a trap

this trap may include a simple timer

or perhaps a detailed series of tests for the pass function

e.g.

the following function simply loops through a passed counter

outputs a series of characters for each iteration

// FN: test loop to output to terminal

function loopOutput(counter, marker = '-') {

 if (!counter) {

 return false;

 }

 // loop through passed counter - check number for even...

 for (i = 0; i <= counter; i++) {

 // check for even counter value

 if (i % 2 === 0) {

 process.stdout.write('+');

 } else {

 // console.log(marker);

 process.stdout.write(marker);

 }

 }

 console.log('\n');

 return true;

}

JavaScript - Proxy

custom proxy for measuring performance - part 2

we may then wrap this function inside a Proxy

adding a simple timer for the duration of the loop

// wrap function inside custom Proxy

loopTest = new Proxy(loopOutput, {

 // apply simple timer to loop function

 apply: (target, thisArg, args) => {

 console.time("loopTest");

 /* invokes target function - thisArg defines the `this` value

 * if no `thisArg`, undefined will be used instead...

 * thisArg = value to use as `this` when executing a callback

 * args passed to target function loopOutput

 */

 const result = target.apply(thisArg, args);

 console.timeEnd("loopTest");

 return result;

 }

});

apply property trap means function value will be executed each

time loopOutput function is called

handler will now be executed on function invocation for

loopTest

JavaScript - Proxy

custom proxy for measuring performance - part 3

we may then execute this function with its Proxy

// call function with counter value and custom marker...

loopTest(75, '-');

markers are output to the terminal

includes a record of the loop's performance in milliseconds

benefit of this approach

we do not need to modify the original function, loopOutput
the return, logic, computation &c. will all remain the same

customisation in this example does not affect the passed function

performance checking using the apply trap

loopOutput function is now routed through the custom proxy

each time it is executed

JavaScript - Proxy

custom proxy for property autopopulate

a proxy may also be used to autopopulate properties

e.g.

we might need to model a directory structure for a file save

will require verification of a defined file path

or creation of directories to ensure a path may be completed successfully

latter option may be achieved using a custom proxy

create missing directories in a defined path structure

e.g.

// FN: recursive check for dir path and file...

function Directory() {

 return new Proxy({}, {

 get: (target, property) => {

 console.log(`reading property...${property}`);

 // check if property already exists

 if (!(property in target)) {

 // if not - simply add a new directory to target

 target[property] = new Directory();

 }

 // otherwise return property as is from target

 // - write method not implemented for actual directory...

 return target[property];

 }

 });

}

// create new Proxy for function

const rootDir = new Directory();

try {

 // check properties relative to root dir...

 rootDir.testDir.test2Dir.testFile = "test.md";

 console.log('exception not raised...');

} catch (event) {

 // error handling for null exception should be OK due to custom proxy...

 console.log(`exception raised...${event}`);

}

JavaScript - Proxy

Reflect a proxy - intro

ES6 introduced a complement to Proxy usage

a new built-in object, Reflect

Proxy traps are mapped one-to-one in the Reflect API

allows an easy combination of Proxy and Reflect usage

e.g. for each trap there is a matching reflect method

JavaScript - Proxy

Reflect a proxy - get trap

e.g. use Reflect.get to define default behaviour for a Proxy

getter.

const handler = {

 get(target, key) {

 if (key.startsWith('_')) {

 throw new Error(`Property "${ key }" is inaccessible.`)

 }

 return Reflect.get(target, key)

 }

}

const target = {}

const proxy = new Proxy(target, handler)

proxy._secret

in this example, now unable to access the _secret property

obvious benefit of this Reflect usage is the abstraction of get
usage

from Proxy getter to a default, re-usable Reflect get method

use the Proxy getter

e.g. to check against data, type &c. in the target

then call the Reflect get method if successful

a useful option for restricting access to certain properties through

a Proxy

expose the Proxy instead of the underlying object

setting access privileges according to requirements

if successful, a request will then be handled by the Reflect API

method

access must now go through the Proxy

and meet its rules and requirements

JavaScript - Proxy

Reflect a proxy - false return

returning an error may still be an indication that the _secret
property exists

alternative is to return an explicit false boolean value for

requested hidden property

const handler = {

 get(target, key) {

 if (key.startsWith('_')) {

 return false;

 }

 return Reflect.get(target, key)

 }

};

const library = {

 archive : 'waldzell',

 curator : 'knechts',

 _secret : true

};

const proxy = new Proxy(library, handler);

console.log(`secret = ${proxy._secret}`);

console.log(`archive = ${proxy.archive}`);

a request for underscore value names may still be checked using

// _secret is not a private property in object -

console.log(proxy.hasOwnProperty('_secret'))

underscore property names are still not private

remain visible to specific property checks

JavaScript - Proxy

Reflect a proxy - set trap - part 1

we may also apply reflection to set traps

reflected set method defines behaviour for a setter on a given

Proxy object

equivalent to the default behaviour for the proxy

e.g.

set(target, key, value) {

 return Reflect.set(target, key, value)

}

also add various checks for the passed key...

JavaScript - Proxy

Reflect a proxy - set trap - part 2

now update our previous example to include a set trap with

Proxy support

const handler = {

 get(target, key) {

 if (key.startsWith('_')) {

 // return false to show prop doesn't exist...

 return false;

 }

 return Reflect.get(target, key)

 },

 set(target, key, value) {

 return Reflect.set(target, key, value);

 }

};

then test property access using the get and set traps

const library = {};

const proxy = new Proxy(library, handler);

proxy.archive = 'mariafels';

proxy._secret = true;

JavaScript - Proxy

Reflect a proxy - defaults and checks

as we use the Reflect object as the default for traps

we may add checks, updates &c. to the Proxy trap itself

e.g. we might add a conditional check to the Proxy

then pass a successful update or query to the Reflect method

default Reflect method allows abstraction for traps from the Proxy

e.g. we might update each trap with a call to the following

conditional check

function keyCheck(key, action) {

 if (key.startsWith('_')) {

 throw new Error(`${action} action is not permitted on '${ key }'`)

 }

}

function is called in each trap before continuing to the Reflect

method for get or set

JavaScript - Proxy

proxy wrapper - part 1

to ensure we restrict access to a target object to the defined

proxy and reflect traps

need to wrap the target itself in a Proxy

target object may have been accessed directly in certain contexts

might be beneficial for an admin mode and access

to restrict access

wrap such objects in the Proxy to restrict access to the defined traps and
handlers

JavaScript - Proxy

proxy wrapper - part 2

e.g. we can modify our previous example for get and set traps

function proxyWrapper() {

 const target = {};

 const handler = {

 get(target, key) {

 if (key.startsWith('_')) {

 // return false to show prop doesn't exist...

 return false;

 }

 return Reflect.get(target, key)

 },

 set(target, key, value) {

 return Reflect.set(target, key, value);

 }

 };

 return new Proxy(target, handler);

}

JavaScript - Proxy

proxy wrapper - part 3

target may now be accessed and managed using an instantiated

proxy

const proxiedObject = proxyWrapper();

// set prop & value on target using proxy set trap

proxiedObject.archive = 'waldzell';

// target accessible using proxy get trap

console.log(`target archive = ${proxiedObject.archive}`);

target may not be accessed directly using standard property

access

// target not directly accessible

console.log(`target = ${target}`);

JavaScript - Proxy

proxy wrapper - pass object to wrapper

we may modify this wrapper to also accept an existing object

may then be returned wrapped in a Proxy

e.g.

const archive = {

 name: 'waldzell'

}

const proxiedArchive = proxyWrapper(archive);

JavaScript - Proxy

proxy wrapper - check object - part 1

add a further check to ensure we always have a target object to

work with..

regardless of passed argument value

e.g. add a check to the proxyWrapper function to ensure target

is always an object

// check object & return empty object if necessary...

function checkTarget(original) {

 // check for existing target object

 if (original.typeof !== 'object' || original === undefined) {

 console.log('not object...');

 const target = {};

 return target;

 } else {

 const target = original;

 return target;

 }

}

JavaScript - Proxy

proxy wrapper - check object - part 2

if we pass a string instead of a target object

we can now create a proxy wrapper with an empty object

const proxiedArchive = proxyWrapper('archives');

// set prop & value on target using proxy set trap

proxiedArchive.admin = 'knechts';

proxiedArchive._secret = '1235813';

properties for admin and _secret may now be set against an

empty object

due to the passed archives string

we can call this function at the top of the proxyWrapper
function

function proxyWrapper(original) {

 // check target for proxy wrapper - original must be object

 const target = checkTarget(original);

 ...

}

JavaScript - Proxy

proxy wrapper - update property access check

also abstract initial check for property access using a defined

character delimiter

e.g.

// check property access using defined char delimiter

function checkDelimiter(key, char) {

 // check key relative to specified char delimiter

 if (key.startsWith(char)) {

 // return false to show prop not available

 return true;

 }

}

simply check defined delimiter character relative to passed

property key

may then be called in the proxyWrapper function

if (checkDelimiter(key, '_')){

 return false;

}

JavaScript - Proxy

proxy wrapper - restricting access

in the previous examples

we define the target object both inside and outside the proxyWrapper
function

both may be effective options for restricting object access

depending upon context

internal object declaration for target restricts full access to the

Proxy object

any traps for the object will only be accessible using the Proxy

object

consumer must use the instantiated Proxy object to read, write,

query &c.

external target object may still be useful after it has been

wrapped by a Proxy object

restricted access is controlled by only exposing the target as a

Proxy object

e.g. if we exposed the target as an access point for a pubic API

proxy object will be exposed and not the original target object

JavaScript - Proxy

proxy and schema validation

objects may be defined for a specific purpose or context

requires control over stored properties and values

validation allows us define the structure of an object

e.g. its properties, types, permitted values &c.

we may use a third party module or custom function

may return an error for invalid input and data...

still need to ensure that the object storing the input data is

restricted

e.g. to authorised access both internal and external to the app

another option is to use a Proxy with validation of the object

proxy object may be used to provide access to the model object for validation

another benefit of a proxy with validation is the separation of

concerns

data object remains separate from the validation

consumer never accesses the input object directly

given a proxy object with validation checks and balances

original input object remains a plain object due to nature of Proxy

object usage

defined proxy handlers for validation &c. may also be referenced

and reused

reuse across multiple Proxies...

JavaScript - Proxy

proxy and validator - part 1

create an initial validator

using a Proxy, a map, and defined handlers for required object properties

e.g. as a property is set through a proxy object

its key may be checked against the map

if there is a rule for the key, its handler value will be executed

handler executed to check that the property is valid

// MAP - validation rules for properties

const validationMap = new Map();

// TRAPS - define traps for proxy

const validator = {

 // set trap

 set(target, key, value) {

 // check map for matching handler

 if (validationMap.has(key)) {

 // return handler function if available...pass value as parameter

 return validationMap.get(key)(value);

 }

 // else - default reflect set method for proxy

 return Reflect.set(target, key, value);

 }

};

JavaScript - Proxy

proxy and validator - part 2

value may be passed as a parameter to the handler function

stored in the map for the requested key

function may include a validation, check &c.

// RULES - define executable rules for permitted object properties

// e.g. log, update state, get state, broadcast, subscribe...

// e.g. sample validation for text to log

function validateLog(text) {

 if (typeof text === 'string') {

 console.log(`logger = ${text}`);

 } else {

 throw new TypeError(`logger requires text input...`);

 }

}

JavaScript - Proxy

proxy and validator - part 3

we may then use this proxy and map as follows

// set key and handler function in map

validationMap.set('logger', validateLog);

// empty object to wrap with proxy

const process = {};

// instantiate proxy object

const proxyProcess = new Proxy(process, validator);

// string set using handler for logger

proxyProcess.logger = 'test string = hello proxy...';

// number will not be set - fails validation

proxyProcess.logger = 96;

Project Outline - Setup & Usage

intro

consider task runners and build tools

e.g. Grunt, Webpack...

relative to build distributions and development environments

for a new project, begin by initialising a Git repository

initialise in the root directory

also add a .gitignore file to our local repository

define files and directories not monitored by Git's version control

then initialise a new NodeJS based project using NPM

execute the following terminal command

npm init

answer initial npm init questions or use suggested defaults

package.json file created

default metadata may be updated as project develops

Project Outline - Setup & Usage

directory structure - part 1

basic project layout may follow a sample directory structure,

.

|-- build

| |-- css

| |-- img

| |-- js

|-- src

| |-- assets

| |-- css

| |-- js

| |__ app.js

|-- temp

|-- testing

|__ index.html //applicable for client-side, webview apps &c.

sample needs to be modified relative to a given project

build, temp, and testing will include files and generated

content

from various build tasks

build and temp directories may be created and cleaned

automatically

as part of the build tasks

do not need to be created as part of the initial directory structure

Project Outline - Setup & Usage

directory structure - part 2

example structure adds index.html file to root of project

structure

e.g. for client-side and webview based development

structure includes build directories

may not add until build tasks for a release distribution

commonly include bundling, minification, uglifying, &c.

build directory will be part of a build task

also update our project's .gitignore file

.DS_Store

node_modules/

*.log

build/

temp/

Project Outline - Setup & Usage

install and configure Grunt

start by installing and configuring Grunt for the above sample

project structure

npm install grunt --save-dev

install assumes a global scope for the NPM package grunt-cli
saves metadata to package.json for development builds only

to use Grunt with a project

add a config file, Gruntfile.js to the project's root directory

includes initial exports for tasks and targets

we may then load and register the required tasks

Project Outline - Setup & Usage

Gruntfile.js - initial exports

Grunt config is again dependent on specifics of the project

we may add some common options

e.g. linting, build distributions, minification and bundling, uglifying, sprites &c.

use of rollup will depend upon required support for modules

including ES modules within JavaScript apps

module.exports = function(grunt) {

 grunt.initConfig(

 {

 jshint: {

 all: ['src/**/*.js'],

 options: {

 'esversion': 6,

 'globalstrict': true,

 'devel': true,

 'browser': true

 }

 },

 rollup: {

 release: {

 options: {},

 files: {

 'temp/js/rolled.js': ['src/js/main.js'],

 },

 }

 },

 uglify: {

 release: {

 files: {

 'build/js/mini.js': 'temp/js/*.js'

 },

 }

 },

 sprite: {

 release: {

 src: 'src/assets/images/*',

 dest: 'build/img/icons.png',

 destCss: 'build/css/icons.css'

 }

 },

 clean: {

 folder: ['temp'],

 }

 }

);

};

Project Outline - Setup & Usage

Gruntfile.js - custom task

we may add custom tasks such as metadata generation,

buildMeta: {

 options: {

 file: './meta.md',

 developer: 'debug tester',

 build: 'debug'

 }

},

we may add tasks for CSS &c. as we continue to develop the

project

Project Outline - Setup & Usage

Gruntfile.js - use tasks - part 1

after defining the exports for tasks and targets,

we can load the required Grunt plugin modules

register the required tasks

...

we may run these registered tasks together

or separately relative to distribution and environment

e.g. load the plugins for the required tasks,

// linting, module bundling, minification, directory cleanup...

grunt.loadNpmTasks('grunt-contrib-jshint');

grunt.loadNpmTasks('grunt-rollup');

grunt.loadNpmTasks('grunt-contrib-uglify-es');

grunt.loadNpmTasks('grunt-spritesmith');

grunt.loadNpmTasks('grunt-contrib-clean');

Project Outline - Setup & Usage

Gruntfile.js - use tasks - part 2

plugins correspond to installed NPM packages for current project

e.g.

npm install grunt-contrib-jshint --save-dev

npm install grunt-rollup --save-dev

npm install grunt-contrib-uglify-es --save-dev

npm install grunt-spritesmith --save-dev

npm install grunt-contrib-clean --save-dev

Project Outline - Setup & Usage

Gruntfile.js - register custom task

we may then register a custom task for various targets in the builds

e.g.

// custom task - build meta for default debug

grunt.registerTask('buildMeta', function() {

 console.log('debug build...');

 const options = this.options();

 metaBuilder(options);

});

//custom task - build meta for release

grunt.registerTask('buildMeta:release', function() {

 console.log('release build...');

 // define task options - incl. defaults

 const options = this.options({

 file: 'build/release_meta.md',

 developer: "spire & signpost",

 build: "release"

 });

 metaBuilder(options);

});

Project Outline - Setup & Usage

Gruntfile.js - register builds

then register some build tasks

tasks may combine the options from the config

provides the execution of staggered tasks for a single build call

e.g. a debug build may include

linting, custom metadata, and a clean task

// debug build tasks - default tasks during development...

grunt.registerTask('build:debug', ['jshint', 'buildMeta', 'clean']);

we may also define a build process for staging or release

we may run and test Grunt for the current project

relative to project requirements, e.g. debug or release

grunt build:debug

or

grunt build:release

// build tasks with specific 'release' targets...

grunt.registerTask('build:release', ['jshint', 'rollup:release', 'uglify:release'

Project Outline - Setup & Usage

development with environments

as we develop more complex apps

need to consider how we configure and use such build tools

e.g. with various environments

development

staging

production / release

we can define a debug or release distribution build

use with each of these environments

Project Outline - Setup & Usage

environment setup - development - part 1

app development will primarily focus on a debug distribution

provide tasks such as linting, testing, metadata, watch, &c.

becomes common distribution for active, ongoing development

also need to ensure environment variables are aggregated

allows the app to run as expected

stored in the same manner regardless of debug or release

difference is use of encryption

and the nature of the required environment configs

bundling with minification and uglifying

usually added to a project as part of release distribution

may serve little practical benefit for ongoing active development

Project Outline - Setup & Usage

environment setup - development - part 2

we may define a common structure for Node based apps as

follows

.

|-- debug

|-- src

| |-- assets

| |-- js

|-- temp

|-- testing

|__ app.js

develop the app, including the app source code, in the src
directory

build our app in the debug directory

each time we need to check and debug usage

temporary build artifacts may be added to the temp directory

cleaned after each build workflow has been completed

e.g. each time we complete a call to build:debug
clean, where applicable, the build artifacts

we may also choose to combine debug and temp
a single temp directory

depending upon project requirements

Project Outline - Setup & Usage

environment setup - development - part 3

for a client-side or mobile hybrid app

slightly modify this directory structure, e.g.

.

|-- debug

| |-- css

| |-- img

| |-- js

|-- src

| |-- assets

| |-- css

| |-- js

| |__ app.js

|-- temp

|-- testing

|__ index.html

assets directory may include raw image files, icons, &c.

test builidng these image assets as sprites

added to the img directory during the build

also use image optimisation at this stage

e.g. test UI and UX performance

part of the debug distribution is the use of watch for live

reloading

nodemon for Node.js based apps

also consider tasks to aggregate logging within the app's code

may include explicit console.log() statements, and error

handling

Project Outline - Setup & Usage

environment setup - development Grunt config - part 1

update our Grunt config

use a debug distribution in current development environment

e.g. add any required build options for debug

then integrate required environment config variables &c.

start with unencrypted JSON files

may contain defaults for options

e.g. current environment, server's port number &c.

{

 "NODE_ENV": "development",

 "PORT": 3826

}

Project Outline - Setup & Usage

environment setup - development Grunt config - part 2

define some additional project directories

e.g. encrypted and decrypted config files

.

|-- env

| |-- defaults

| |-- private

| |-- secure

env/defaults contains the unencrypted defaults

as defined in defaults.json

env/private includes decrypted secure files

env/secure should be reserved for encrypted files

we may add to version control

env/private should not be commited to version control

a few different options for file encryption

e.g. RSA based public/private keys, GNU Privacy Guard (GPG, or GnuPG)

further details in the extra notes

encryption, signatures, and verification of files

includes step by step examples for working with RSA

and extra layers of verification for a file with generated signatures

Project Outline - Setup & Usage

merging config sources

as a project develops, we may produce various sources of

configuration

may include sources such as

JSON files

JavaScript objects

environment variables

process arguments

...

to help merge such disparate config sources

add an NPM module such as nconf
nconf

or we may simply load environment variables

e.g. from a project's .env file using the package dotenv
dotenv

https://www.npmjs.com/package/nconf
https://www.npmjs.com/package/dotenv

Project Outline - Setup & Usage

sample waterfall with nconf

with nconf we may bundle various config stages for a project

e.g.

const nconf = require('nconf');

nconf.argv();

nconf.env();

nconf.file('dev', 'development.json');

module.exports = nconf.get.bind(nconf);

getting config variables and settings from defined stores in defined

cascading order

order is prioritised

allowing overrides and defaults at various stages of the cascade

e.g. if a value is given in the command arguments, argv

Project Outline - Setup & Usage

continuous development

continuous development (CD)

allows a developer to work on app code &c. without many customary
interruptions

e.g. server reboots, code refreshes, debugging, linting &c.

CD often reduces repetitive tasks in a development flow

helping to automate processes and development

build process may be automated and run whenever a pertinent

change is detected

Project Outline - Setup & Usage

continuous development - add a watch task - part 1

add a watch task to a build flow

allow a rebuild each time a given file is edited and then saved

e.g. for Grunt, we may add the plugin module

grunt-contrib-watch

npm install grunt-contrib-watch --save-dev

and update the Grunt config

grunt.loadNpmTasks('grunt-contrib-watch');

plugin watches file system for code changes in a tracked project

then runs the affected tasks as required

basic watch example might include the following

watch: {

 js: {

 tasks: ['jshint:client'],

 files: ['src/**/*.js']

 }

}

continuously checks src directory for JavaScript file change or

addition

then runs the jshint:client task

this type of watch provides a broad approach to managing project

changes

Project Outline - Setup & Usage

continuous development - add a watch task - part 2

then include additional targets relative to project requirements

e.g. add further JS specific targets, CSS, sprites &c.

we may also define separate build tasks to use watch
e.g.

// dev tasks - combine debug with watch

grunt.registerTask('dev', ['build:debug', 'watch']);

which we may call as follows,

grunt dev

executes the tasks for build:debug

then starts watching the specified targets

Project Outline - Setup & Usage

continuous development - live reload - part 1

also use watch to add support for live reloads

built-in support with the grunt-contrib-watch plugin

reload option uses web sockets

originally designed for browser based real-time communication and
synchronisation

LiveReload option listens for changes to monitored files,

directories &c.

then reload and refresh the current active app

support for the LiveReload task may added as follows

livereload: {

 options: {

 livereload: true

 },

 files: ['build/**/*', './*.html'],

},

provides a live reload server - usually runs at

localhost:35729

object includes a property to confirm livereload
then defines files to watch to initiate a reload

e.g. in this example

watching build directory, its children, then the root directory for any HTML
files

includes any changes to default index.html file

n.b. this server does not actually reload the app for us

need to use a server to host the app

host server is monitoring this livereload server

Project Outline - Setup & Usage

continuous development - live reload - part 2

livereload also provides a setup script for the test app

two common options for use

add a link to this script in our project's index.html file

<script src="http://localhost:35729/livereload.js"></script>

or

use a Grunt plugin, grunt-contrib-connect

grunt-contrib-connect

automatically injects script in our app's code

preferred option for ongoing development

install this plugin as follows

npm install grunt-contrib-connect --save-dev

then update the Gruntfile.js config

connect: {

 server: {

 options: {

 port: 8080,

 base: '.',

 hostname: '*',

 protocol: 'http',

 livereload: true,

 }

 },

},

Project Outline - Setup & Usage

continuous development - live reload - part 3

need to update the required build tasks to use these plugins

e.g. add connect and livereload support to dev build task

// dev tasks - combine debug with watch, live server, and live reload

grunt.registerTask('dev', ['build:debug', 'connect', 'watch']);

then run this build task

grunt dev -v

-v flag outputs verbose messages

helps initially check everything is running as expected

Project Outline - Setup & Usage

add CSS support - part 1

app styles will, customarily, include a combination of options

e.g. CSS stylesheets and dynamic JavaScript based style properties

to work with CSS stylesheets, similar to JavaScript files

consider a Grunt task for minifying these files

we need to install the Grunt module, grunt-contrib-cssmin

npm install grunt-contrib-cssmin --save-dev

then add the following to include this package in the

Gruntfile.js config

grunt.loadNpmTasks('grunt-contrib-cssmin');

and update the build task for a release distribution

referencing the following task for cssmin

cssmin: {

 release: {

 options: {

 banner: '/* minified css file - basic-es-modules */'

 },

 files: {

 'build/css/mini.css': [

 'src/css/main.css',

]

 }

 }

},

// build tasks with specific 'release' targets...

 grunt.registerTask('build:release', ['rollup:release', 'cssmin:release', 'uglif

Project Outline - Setup & Usage

add CSS support - part 2

with the minified CSS stylesheet built

add a link to this stylesheet in the index.html file

<!-- css styles - main -->

<link rel="stylesheet" href="./build/css/mini.css">

then update the watch task by adding the following for CSS

css: {

 files: ['src/**/*.css'],

 tasks: ['cssmin:release']

},

then run the usual Grunt build tasks

e.g. to minify the CSS stylesheets, and watch for any updates and changes...

Project Outline - Setup & Usage

Watch update

current watch task includes support for CSS, JS, and HTML

includes checks for modifications

e.g. to any defined src directories for CSS and JS

monitors any HTML files in the app's root directory

a working watch task is as follows

watch: {

 js: {

 files: ['src/**/*.js'],

 tasks: ['jshint:client', 'rollup:release', 'uglify:release']

 },

 css: {

 files: ['src/**/*.css'],

 tasks: ['cssmin:release']

 },

 html: {

 files: ['./*.html']

 },

 livereload: {

 options: {

 livereload: true

 },

 files: ['build/**/*', './*.html'],

 },

},

Cordova - Extra options - build and
customisation

config.xml

config.xml generated as part of Cordova CLI create
command

additional preferences we can consider in the metadata

modify values of these preferences

configure and setup our app with greater precision and customisation

Cordova uses config.xml file to help setup structures within an

app

standard metadata for author, description, app name, and ID

additional, useful preferences, e.g.

specifying the default start file as the app loads,

a security setting for resource access

a minimum API for building the app

...

Cordova - Extra options - build and
customisation

config.xml

default start file will be specified as index.html in the config

also update this value to a different file,

<content src="custom.html" />

also update app's settings to define access privileges and domains

for remote resources

e.g. CSS stylesheets, JavaScript files, images, remote APIs, servers...

specifically remote resources that are not bundled with the app itself

Cordova refers to this setting as a whitelist

now been moved to a specific plugin

added by default as we create an app

default value for this setting is global access, e.g.

<access origin="*" />

this setting will be OK for many apps

Cordova - Extra options - build and
customisation

config.xml

may need to restrict access, e.g.

due to user input in our app

remote loading of data

...

might consider restricting our app to specific domains

add as many <access> tags as necessary for our app

<access origin="http://www.test.com" />

<access origin="https://www.test.com" />

allows our app to access anything on this domain

including secure and non-secure requests

also add subdomains relative to a given domain

simply by prepending a wildcard option

<access origin="http://*.test.com" />

<access origin="https://*.test.com" />

we can now update our app to restrict access to specific, required

domains

e.g. remote APIs, servers hosting a DB...

Cordova - Extra options - build and
customisation

config.xml

also add further metadata and preferences to help customise our

app

already seen preferences for icons, splashscreens...

also add further settings for

plugins

specific installed and supported platforms

general preferences for all platforms

or restrict to a single platform

for general preferences there are five global options to consider,

e.g.

BackgroundColor

Android and iOS - specific fixed background colour

DisallowOverscroll

Android and iOS - prevent a rendered app from moving off the screen

Fullscreen

Android (but not iOS) - determine screen usage for an app

e.g. useful for kiosk style apps...

HideKeyboardFromAccessoryBar

iOS (but not Android) - hiding an additional toolbar above a keyboard

Orientation

Android (but not iOS) - locking an app's orientation

Cordova - Extra options - build and
customisation

config.xml

add any necessary preferences using the <preference> element

in our config.xml file

<preference name="fullscreen" value="true" />

add as many preferences as necessary for our app's configuration

customise our preferences for a specific platform

e.g. restricting a preference to just Android or iOS

<platform name="android">

 <preference name="DisallowOverscroll" value="true" />

</platform>

Cordova - Extra options - build and
customisation

merge options

many Cordova apps developed using a single code base

with platform specific preferences and UI customisations

may prefer to create a distinction in the app's design or

functionality

use merges options to create platform specific code, files...

create a new folder called merges in our app's root directory

not the www directory

use merges folder to add platform specific requirements

e.g. css stylesheets

add sub-directory to merges for each supported platform

when we build our Cordova app

Cordova will check for a merges directory for each platform

files will replace existing in www directory

new files added to www directory

config.xml

|-- hooks

|-- merges

 |__ android

 |__ ios

|-- platforms

|-- plugins

|-- www

Cordova - Extra options - build and
customisation

merge options

example usage might include specific stylesheets per platform

e.g. in our app's index.html file add a link to a CSS stylesheet

stylesheet file added as usual to our app's www directory

leave this CSS file blank for the overall project

then add matching CSS file to each platform directory in merges
folder

CSS file then added to our platform specific app as it is built by

Cordova

config.xml

|-- hooks

|-- merges

 |__ android

 |__ css

 |__ platform.css

 |__ ios

|-- platforms

|-- plugins

|-- www

 |__ css

 |__ platform.css

 |__ ...

allows us to add specific

styling, layout, and design requirements

for each supported platform

quick and easy option for platform customisation

Cordova - Extra options - build options

hooks

we've been using Cordova's CLI tool to help

create our apps, add platforms and plugins, build our apps...

we can customise the CLI tool using hooks

scripts able to interact with the CLI tool for a given command and action

consider Hooks in two distinct scenarios

before and after an action is executed by the CLI tool

for the CLI tool we might consider adding a hook

before or after that command and action is called and executed

hooks might include automation of standard build options, tools,

and commands

e.g. automation of adding plugins to a project

add a platform, and then add all required plugins using hook

CLI tool checks for hook scripts in the hooks directory

to add a hook

create a sub-directory in the hooks directory - same name as a hook

Cordova will then check for scripts to execute

scripts will be executed in alphabetical order by filename

hooks can be written in any language supported by the host

computer

Cordova - Extra options - prepare for release

finalise our Cordova app

need to consider preparation and packing of the app

ready for publication to one or more app stores

each major app store conceptually follows a pattern for release

to prepare our app for publication

begin by transitioning app from development version to a stable release version

app requires signing by developer with password

define ownership of app

accept responsibility for publication, contents...

submit the app to a store for publication

required to provide descriptions for the app itself

provide a minimum of screenshots for general usage and prominent features

add supplementary information for publication of app

Cordova - Extra options - prepare for release

Play Store

releasing an Android app is considerably less involved than iOS

developers can release and publish a vast array of application types

Play Store - division between preparation of the app, and then

publication

initial preparation

begin by signing our app with a key - create using command line

use Cordova build tools to create a release build of our app

publication to store

upload our app to Google's Play Store for publication

need to provide some additional supporting information

title for our app

icons

description

screenshots

...

then mark our app as published

Cordova - Extra options - prepare for release

signing

prepare our app for a store

need to sign it using a key store and key prior to publication

key signs the app, which is saved in the keystore

sign our app using the Java tool, keytool

command creates both the keystore and key for our app

command arguments to consider for -keystore and -alias

my-app-ks.keystore
filename for the keystore

can be set to a preferred name for your app

my-app-ks
name of the alias for the keystore

developer can specify their preferred name

can be a simple, plain text name for the keystore

keytool -genkey -v -keystore my-app-ks.keystore -alias my-app-ks -keyalg RSA -key

Cordova - Image - Keytool - Create a Keystore

Keytools - create a keystore

React JavaScript Library

Additional reading, material, and samples

design thoughts

event handling

more composing components

DOM manipulation

forms

intro to flux

animations

lots of samples...

References

React Native

React DevTools

React Native - Layout Props

React Native - StatusBar

Various

Axios JS library

Firebase

Firebase - database rules

Firebase Docs - DataSnapshot

Firebase docs - on() events

Google's Cloud Platform

MDN - Fetch API

XMLHttpRequest

Yarn - Firebase

https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/statusbar.html
https://www.npmjs.com/package/axios
https://firebase.google.com/
https://firebase.google.com/docs/database/security/quickstart
https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot
https://firebase.google.com/docs/reference/js/firebase.database.Reference#on
https://cloud.google.com/shell/docs/features#code_editor
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://yarnpkg.com/en/package/firebase

