
Comp 322/422 - Software Development for
Wireless and Mobile Devices

Fall Semester 2019 - Week 2

Dr Nick Hayward

Cordova App - anatomy of a template - part 1

cordova create basic com.example.basic Basic

first parameter of this represents the path of our project

creating a new directory in the current working directory called

basic

second and third parameters are initially optional

helps to define at least the third parameter

the visible name of the project, Basic

edit either of the last two parameters in the projects

config.xml file

at the root level of our newly created project

Cordova App - anatomy of a template - part 2

new project includes the following default structure

default parts for our development...

config.xml

hooks

 - README.md

package.json

platforms

 - android

 - platforms.json

plugins

 - android.json

 - cordova-plugin-whitelist

 - fetch.json

res

 - icon

 - screen

www

 - css

 - img

 - index.html

 - js

initially, our main focus will be the www directory

Cordova App - anatomy of a template - part 3

www directory will be the initial primary focus

three primary default child directories

css

img

js

important index.html file at the root level

three primary files, which include

index.css
index.js
logo.png

config.xml file stores configuration settings for the application

Cordova App - anatomy of a template - part 4

three important directories to help manipulate and configure our

Cordova application

platforms

plugins

hooks

platforms includes an application's currently supported native

platforms

e.g. Android

plugins includes all of the application's used plugins

hooks contains a set of scripts used to customise commands in

Cordova

customise scripts that execute before or after a Cordova command runs

check supported platforms in a Cordova initiated project

shows installed & all available platforms

cordova platform

only install platforms supported by local OS

e.g. Android, iOS, Electron, OS X &c. on Mac OS X

Cordova App - anatomy of a template - part 5

WWW directory

three primary files initially help us develop Cordova application

index.html
index.js
index.css

Cordova App - anatomy of a template - part 6

index.html - default template for new project

<body>

 <div class="app">

 <h1>Apache Cordova</h1>

 <div id="deviceready" class="blink">

 <p class="event listening">Connecting to Device</p>

 <p class="event received">Device is Ready</p>

 </div>

 </div>

 <script type="text/javascript" src="cordova.js"></script>

 <script type="text/javascript" src="js/index.js"></script>

</body>

Cordova App - anatomy of a template - part 7

default index.html page very straightforward

<div class="app"> is the parent section, acts as the app's

container

contains a child div
unique ID deviceready
two key paragraphs triggered relative to state changes in the app

app simply updates state relative to event being actioned and

listened

events are monitored and controlled using the app's initial

JavaScript

initialize() method calls bindEvents() method

adds an event listener to this deviceready div

means when device is ready event listening paragraph will

be hidden

event received paragraph is now shown

Cordova App - anatomy of a template - part 8

js/index.js

var app = {

 // Application Constructor

 initialize: function() {

 this.bindEvents();

 },

 // Bind Event Listeners

 //

 // Bind any events that are required on startup. Common events are:

 // 'load', 'deviceready', 'offline', and 'online'.

 bindEvents: function() {

 //document.addEventListener('deviceready', this.onDeviceReady, false);

 // update bind for ES6

 document.addEventListener('deviceready', (event) => this.onDeviceReady(ev

 },

 // deviceready Event Handler

 //

 // The scope of 'this' is the event. In order to call the 'receivedEvent'

 // function, we must explicitly call 'app.receivedEvent(...);'

 onDeviceReady: function() {

 app.receivedEvent('deviceready');

 },

 // Update DOM on a Received Event

 receivedEvent: function(id) {

 var parentElement = document.getElementById(id);

 var listeningElement = parentElement.querySelector('.listening');

 var receivedElement = parentElement.querySelector('.received');

 listeningElement.setAttribute('style', 'display:none;');

 receivedElement.setAttribute('style', 'display:block;');

 console.log('Received Event: ' + id);

 }

};

app.initialize();

Image - Cordova Splash Screen

Apache Cordova Default Splashscreen

Apache Cordova - architecture - part 1

Cordova relies on web technologies at its core

HTML5

CSS

JavaScript (JS)

core architecture for app development using Cordova

supplement this core with additional helper files

e.g. JSON (JavaScript Object Notation) resource files

to enable access to a device's native functionality

JS application objects (or functions) call Cordova APIs

Cordova APIs for different native mobile OSs, e.g.

use Cordova Android for native Android functionality...

use Cordova iOS for native iOS...

develop our own custom plugins as necessary

https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html

Image of Apache Cordova architecture

The following diagram summarises the core

architecture for Cordova application

development.

Source - Apache Cordova

https://cordova.apache.org/

Apache Cordova - architecture - part 2

core architecture creates a single screen in the native app

single screen contains a WebView

uses all of the device's available screen space (real estate)

native WebView used to enable loading app's HTML, CSS, JS...

WebView is a native view in each mobile OS

allows us to display HTML based content

allows us to leverage power and functionality of a mobile browser

working within a contained native app

Apache Cordova - webview - part 1

using this WebView in our app

Cordova loads the app's default startup page

in essence its index.html page

passes control of the app to the native WebView

allows user to control the app as normal

user can interact with app in native manner

user gets a native app experience

user interaction can include the vast majority of standard native

interaction patterns and options

user is not aware of difference between Cordova or native

developed app

Apache Cordova - webview - part 2

WebView has an implementation in all of the major mobile OSs

Android has a class called

android.webkit.WebView

iOS references the UIWebView
part of the UIKit framework

n.b. from iOS 12 - WKWebView from WebKit API

Windows refers to a WebView class,

Windows.UI.Xaml.Controls

Apache Cordova - native functionality - part 1

provides access to many types of native functionality, including

sound and audio

recording

camera capture

photo access

geolocation

sensors...

Cordova leverages JavaScript APIs to provide native functionality

Image - Apache Cordova Native Functionality

Apache Cordova Architecture - JS APIs

Source - Apache Cordova

https://cordova.apache.org/

Apache Cordova - native functionality - part 2

architecture is an elegant approach to solving cross-platform issues

allows developers to leverage unified API interface

perform specific native functions

calls to native functionality transparent across platforms
strength of using JavaScript APIs

Cordova JavaScript APIs

call the required native OS API

e.g. Cordova's Android or iOS API

plugins give Cordova its power and flexibility

Apache Cordova - example call - part 1

If we want to get a picture from the camera, we

call the following using Cordova

navigator.camera.getPicture(onSuccess, onFail, { quality: 75,

 destinationType: Camera.DestinationType.DATA_URL

});

function onSuccess(imageData) {

 var image = document.getElementById('Image');

 image.src = "data:image/jpeg;base64," + imageData;

}

function onFail(message) {

 alert('Error: ' + message);

}

Apache Cordova - example call - part 2

making a simple call to the method getPicture() of the

camera object

call is performed with 3 parameters

onSuccess

callback allows us to tell the app what to do if the call and returned data is
successful

onFail

another callback tells the app how to handle an error or false return

e.g. an error is thrown, callback will handle output of a suitable error message

quality

Apache Cordova - example call - part 3

quality: 75, destinationType: Camera.DestinationType.DATA_URL

slightly different as it contains a JS object with configuration

parameters

two parameters are for quality and destinationType

quality can be from 0 to 100

destinationType refers to the required format for the

returned data value

can be set to one of 3 possible values

DATA_URL - format of the returned image will be a Base64 encoded string

FILE_URL - returns the image file URL

NATIVE_URI - refers to the images native URI

Apache Cordova - example call - part 4

if the return is a success we will get a Base64 encoded string

string of the image just captured using the native camera

leveraging the power of the Apache Cordova camera plugin code,

e.g. Android camera plugin

power of the underlying Android class

wrapped in a layer that we can call from our JavaScript code

plugin is written natively for Android

we access it using JS with Cordova

plugins for other platforms follow the same pattern

e.g. iOS camera plugin...

Apache Cordova - example call - part 5

we issue a call from JS using Cordova to the native code in the

plugin

plugin processes this request

returns the appropriate value

either for a success or a failure

in our example, if request to the camera is successful

Android plugin will return a string to the JS Cordova client, as requested

use similar pattern for other mobile OSs

e.g. accessing a camera's functionality with iOS...

appropriate plugin required for necessary mobile OS

if not, we can write a custom plugin

Apache Cordova - cross-platform power

implement capturing a photo from device's native camera on

multiple mobile platforms

Cordova plugin architecture removes

need to understand how the photo capture is implemented or handled natively

Cordova plugin handles the native calls

Cordova plugin handles processing for each native device

Cordova - CLI - Useful commands

A few initial useful CLI commands

command example description

cordova cordova
general command - outputs overview with 5

categories of information and help

-v cordova -v check current installed version of cordova

requirements
cordova

requirements
check requirements for each installed platform

create

cordova create

basic

com.example.basic

422Basic

creates new project with additional arguments

for directory name, domain-style identifier, and

the app's display title

platform add
cordova platform

add android --save

specify target platforms, eg: Android, iOS... (NB:

SDK support required on local machine)

platform ls cordova platform ls

checks current platforms for cordova

development on local machine and lists those

available

platform

remove

(platform

rm)

cordova platform

rm android
remove an existing platform

build cordova build
iteratively builds the project for the available

platforms

build ios cordova build ios
limit scope of build to a specific platform (useful

for testing a single platform...)

prepare cordova prepare ios
prepare a project, and then open and build &c.

with native IDE (eg: XCode, Android Studio...)

compile cordova compile ios compile ios specific version of app

emulate
cordova emulate

android

rebuilds an app and then launches it in a specific

platform's emulator

run
cordova run

android

run an app on a native device connected to the

local machine

run --list cordova run --list check available emulators, e.g. Android AVDs

more commands will be added as we work with Cordova, NPM...

Cordova Design - architecture - intro

quickly recap the architecture and design behind a Cordova Native

application

Cordova effectively consists of the following components

source code to allow us to build a native application container

specific to the mobile platforms we choose to add to our project, eg: Android,
iOS...

a collection of various APIs, implemented by Cordova as plugins

web application running within the container

access to native device functionality, APIs, and applications

provides a useful set of tools that help us manage our projects

creating a project, project files...

manage required plugins

build native applications using the native SDK

testing of applications using emulators, simulators...

Cordova Design - architecture - diagram

Cordova - Architecture

Cordova Design - architecture

JS & Web plugins

outline architecture includes the option for JavaScript only plugins

JS plugins in Cordova normally a bridge from our web container to

the native APIs

useful way to expose native device functionality to the web application

use and develop plugins purely in JS

add an existing library to help with data visualisations, graphics...

create our own focused plugins

abstraction of application features and logic, other specific requirements...

greater support for native functionality at the web application level

HTML5 APIs

Cordova Design - architecture - web container
- part 1

Cordova development

uses many of the same underlying technologies as standard web application
development

a few limitations relative to network access that we need to consider

hybrid mobile application with Cordova

a web application needs to be written as a self-contained application

needs to be able to run within web container on native device

constantly fetching external resources not good practice

mix of local and remote resources preferable for most apps

external resources an issue if we lose a network connection

index.html file will normally be the only HTML file we use

separate pages will be containers within this file

Cordova Design - architecture - web container
- part 2

rethink our approach to building such mobile web stack

applications

help us leverage the inherent capabilities of Cordova

self-contained applications need to ensure

any application files and data are initially available

allows the application to launch and load on the native device

without initial calls to a remote server

load the application and render the UI

application can then optionally fetch data

remote server, API, search query, stream media...

consider stages of design for our app's container

Cordova Design - architecture - SDKs and OSs

build our Cordova applications

including default Cordova APIs or additional APIs

each app has to be packaged into a native application

allows app to run on the host native device

each native SDK has its own set of custom or proprietary tools

building and packaging their specific native applications

build our Cordova applications for a native device

web content portion of app is added to a project

applicable to the chosen mobile platforms,

e.g. Android, iOS, Windows 10 Universal Platform...

project is then built for each required platform

using Cordova CLI, for example

uses each of the applicable platform specific set of tools to help build

Cordova App - CLI recap

build initial project

cd /Users/ancientlives/Development/cordova

cordova create basic com.example.basic Basic

cd basic

creates new project ready for development

cordova platform add android --save

cordova build

adds support for native SDK, Android

then builds the project ready for testing and use on native device

cordova emulate android

outputs current project app for testing on Android emulator

cordova prepare android

copies app code into platform ready for building

then use native IDE for build &c...

Cordova App - structure recap - app directory

quick recap of app's structure

new project includes the following default structure

|- config.xml

|- hooks

|- package.json

|- README.md

|- platforms

 |- android

 |- platforms.json

|- plugins

| |- android.json

| |- cordova-plugin-whitelist

| |- fetch.json

|- res

| |- icon

| |- screen

|- www

| |- css

| |- img

| |- index.html

| |- js

initially, our main focus will be the www directory

Cordova App - structure recap - www
directory

|- www

| |- css

| |- index.css

| |- img

| |- logo.png

| |- index.html

| |- js

| |- index.js

Cordova App - basics of development - part 1

default index.html

 <html>

 <head>

 <meta http-equiv="Content-Security-Policy" content="default-src 'self'

 data: gap: https://ssl.gstatic.com 'unsafe-eval'; style-src 'self'

 'unsafe-inline'; media-src *">

 <meta name="format-detection" content="telephone=no">

 <meta name="msapplication-tap-highlight" content="no">

 <meta name="viewport" content="user-scalable=no, initial-scale=1,

 maximum-scale=1, minimum-scale=1, width=device-width">

 <link rel="stylesheet" type="text/css" href="css/index.css">

 <title>Hello World</title>

 </head>

 <body>

 <div class="app">

 <h1>Apache Cordova</h1>

 <div id="deviceready" class="blink">

 <p class="event listening">Connecting to Device</p>

 <p class="event received">Device is Ready</p>

 </div>

 </div>

 <script type="text/javascript" src="cordova.js"></script>

 <script type="text/javascript" src="js/index.js"></script>

 </body>

 </html>

Cordova App - basics of development - part 2

test app index.html

app structure using HTML5 semantic structure

lack of styling will be an issue...

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Security-Policy" content="default-src 'self' data:

 <meta name="format-detection" content="telephone=no">

 <meta name="msapplication-tap-highlight" content="no">

 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-sca

 <link rel="stylesheet" type="text/css" href="css/index.css">

 <title>Basic Events</title>

 </head>

 <body>

 <main>

 <header>

 <h3>Test Events</h3>

 </header>

 <section id="events">

 <!-- output current status relative to PAUSE event... -->

 <p id="pause"></p>

 <!-- output current status relative to RESUME event... -->

 <p id="resume"></p>

 <!-- output timer to check loading and app events -->

 <div id="timer">

 <label id="minutes">00</label>:<label id="seconds">00</label>

 </div>

 </section>

 </main>

 <!-- load JS files for app - cordova.js required -->

 <script type="text/javascript" src="cordova.js"></script>

 <!-- load app main file -->

 <script type="text/javascript" src="js/index.js"></script>

 </body>

</html>

Image - Cordova App - Basic Events

Basic Events

Cordova App - basics of development - part 3

add Cordova specifics

Cordova container for the application

exposes native APIs to web application running in WebView

most APIs not available until applicable plugin added to the project

container also needs to perform some preparation before the APIs

can be used

Cordova informs us when the container, and associated APIs, are

ready for use

fires a specific event, called the deviceready event

application logic requiring use of Cordova APIs

should be executed after receipt of deviceready notification

Cordova App - basics of development - part 4

check deviceready event

/*

* FN: loader for the main app

* - check deviceready event

* - bootstrap app loading & events

*/

function onLoad() {

 // Add the deviceready event

 document.addEventListener("deviceready", function(){

 // attach test events

 document.addEventListener("pause", onPause, false); // pause event

 document.addEventListener("resume", onResume, false); // resume event

 // start test timer

 testTimer();

 }, false);

}

// LOADER - load app & check for deviceready event...

onLoad();

updated loader function for app...

add test events for pause and resume
useful for Android...

Cordova Docs - Events

https://cordova.apache.org/docs/en/latest/cordova/events/events.html

Cordova App - basics of development - part 5

respond to events - pause

pause

// FN: call in response to Pause event

function onPause() {

 // get current Unix timestamp

 const currentTime = Date.now();

 // get status element in DOM

 const pause = document.getElementById('pause');

 // create text node to update DOM

 const text = document.createTextNode(`app has been paused...${currentTime}`);

 // append text to status element

 pause.appendChild(text);

 // show alert in native UI

 alert('app paused');

}

Image - Cordova App - Basic Events

Pause

Basic Events - Pause

Cordova App - basics of development - part 6

respond to events - resume

resume

// FN: call in response to Resume event

function onResume() {

 // get status element in DOM

 const resume = document.getElementById('resume');

 // create text for output

 const text = document.createTextNode("app has been resumed...");

 // append text to status element

 resume.appendChild(text);

 // show alert in native UI

 alert('app now resumed');

}

Image - Cordova App - Basic Events

Resume

Basic Events - Resume

Image - Cordova App - Basic Events

Basic Events

Cordova app - working with plugins - getting
started

start looking at some of the plugins available for Cordova

media playback &c.

test our initial design and structure

add some existing plugins

see how they fit together to create a coherent, basic application

create our new project

cordova create plugintest1 com.example.plugintest plugintest1

add support for Android platform

cordova platform add android --save

add support for other platforms, as required, such as iOS,

Windows...

transfer our default www directory

start updating some of the settings in the config.xml file for

the application

metadata for author, description, name...

quickly run and test this base for our new application

//run in the Android emulator

cordova emulate android

//run on a connected Android device

cordova run android

Image - Cordova app - Plugin Test 1 - getting
started

Cordova - Plugin Test - getting started

Cordova app - working with plugins - add
plugins

add our required plugins to the test application

add plugins for device, file, and media

device plugin added to check and read information about current

device

in effect our Android phone or tablet

file plugin is required to access the device's underlying filesystem

media helps us record and playback media files

add these plugins to our project with the following Cordova

commands

ensure new plugins are applied to our current project

run the following Cordova command

cordova build

n.b. NPM plugin install is now recommended for latest Cordova apps

//add device plugin - Git and NPM options

cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.

cordova plugin add cordova-plugin-device

//add file plugin - Git and NPM options

cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-file.gi

cordova plugin add cordova-plugin-file

//add media plugin - Git and NPM options

cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-media.g

cordova plugin add cordova-plugin-media

Cordova app - working with plugins - update
index.html

update our index.html page to create the basic layout

allow us to load and use media files

use a single page application structure

include our content categories for header, main &c.

add specific nodes for app structure

signifies that we have a contiguous group of form, input elements &c.

use this grouping to add our play button

load our sample file using the installed plugins

perhaps add an icon for the playback option

Image - Cordova app - Plugin Test 1 - getting
started

Cordova - Plugin Test - index.html

Cordova app - working with plugins - add some
logic

add some logic to our application

updates to our JavaScript to allow us to handle events

add handlers for listeners for each button we add to the

application

including the initial play button

add this code to our application's custom JavaScript file

plugin.js

setup the application in response to Cordova's deviceready
event

event informs us that installed plugins are loaded and ready for use

add a function for the deviceready event

allows us to bind our handler for the tap listener on the play button

Cordova app - working with plugins -
onDeviceReady()

add any other required, initial functions later to this same start-up

function

wrap initial function in our main application loader

checks device is ready, and then adds any required handlers

handlers required for audio, e.g.

play

pause

stop

record

...

Image - Cordova app - Plugin Test 1 - getting
started

Cordova - Plugin Test - audio button

Cordova app - working with plugins - audio
playback logic

now setup and tested the basic app logic

added handlers for deviceready and clicking the audio playback button

update logic for the #playAudio button

//play audio file

function playAudio() {

 //initial url relative to WWW directory - then built for Android

 var $audioURL = buildURL("media/audio/egypt.mp3");

 var $audio = new Media($audioURL, null, errorReport);

 $audio.play();

 alert("playing audio...have fun!");

}

add associated media loaders for the audio file

add basic error checks in case the media file is missing, corrupt...

//build url for android

function buildURL(file) {

 if (device.platform.toLowerCase() === "android") {

 var $androidFile = "/android_asset/www/" + file;

 return $androidFile;

 }

}

//return any error message from media playback

function errorReport(error) {

 alert("Error with Audio - " + JSON.stringify(error));

}

Image - Cordova app - Plugin Test 1 - getting
started

Cordova - Plugin Test - audio playback

Cordova app - working with plugins - update
media playback

basic plugin test for media playback within an app

user can play music in their app

user touch interaction with button

file loaded from local filesystem

device playback of selected audio file

leveraging native device functionality in app

calling plugins for device, file, media...

basic app includes,

user interaction in the UI

calls to the exposed JS API for the plugins

playback of audio by the native device

add further functionality

stop, pause...

Cordova app - working with plugins - stop
button

consider how to stop, pause playback

e.g. UI interaction, timer, event...

app logic is very similar

respond to stop event

call method

...

methods for stop, pause, &c. available in plugin API

media.pause

media.stop

media.release

Cordova app - working with plugins - stop
button - part 1

start to update our existing app by adding a stop button to the UI

allow our user to simply tap a button to stop playback

update initial JS logic for the app

listen for tap event on stop button

then call the stop method on the media object

Cordova app - working with plugins - stop
button - part 2

add the logic for our custom method to stop the audio

call as stopAudio()

//stop audio file

function stopAudio() {

 //stop audio playback

 $audio.stop();

 //release audio - important for android resources...

 $audio.release();

 //just for testing

 alert("stop playing audio...& release!");

}

logic still won't stop the audio playing

issue is variable $audio
currently restricted local scope to playAudio() method

initially alter scope of property for $audio itself

now set in initial onDeviceReady() method

function onDeviceReady() {

 //set initial properties

 var $audio;

...

}

logic will now stop audio playing

call to release() method important for OS's audio resources

particularly important to release unwanted resources on Android...

Image - Cordova app - Plugin Test - stop audio
playback

Cordova - Plugin Test - stop audio playback

Image - Cordova app - Plugin Test - stop audio
playback 2

Cordova - Plugin Test - stop audio playback 2

Cordova app - working with plugins - pause
button - part 1

follow similar pattern to add initial pause button to app's HTML

then add our custom pauseAudio() method

handles pausing of current media object

//pause audio file

function pauseAudio() {

 //pause audio playback

 $audio.pause();

}

Image - Cordova app - Plugin Test - pause
audio playback

Cordova - Plugin Test - pause audio playback

Image - Cordova app - Plugin Test - pause
audio playback 2

Cordova - Plugin Test - pause audio playback 2

Cordova app - working with plugins - pause
button - part 2

this logic works but it introduces issues and errors, e.g.

start playback of audio and then pause

then touch play again

audio will restart from the start of the audio file

not ideal user experience...

an error will be thrown, e.g.

press pause once, then twice...

error will be thrown for the call to the pause() method

Image - Cordova app - Plugin Test - pause
audio playback 3

Cordova - Plugin Test - pause audio playback 3

Cordova app - working with plugins - pause
button - part 3

we can monitor change in the playback with a simple property

attached to scope for onDeviceReady() method

property available to play(), pause(), and stop() methods

function onDeviceReady() {

 //set initial properties

 var $audio;

 var $audioPosn = 0;

...

}

now have two properties we can monitor and update

variable $audioPosn has been set to a default value of 0
we can check as we start to playback an audio file &c.

//check current audio position

if ($audioPosn > 1) {

 $audio.play();

 alert("playback position: " + $audioPosn + " secs");

} else {

 $audio.play();

 alert("playback position: start...");

}

also use property to output current playback position, reset for

cancelling, &c.

Image - Cordova app - Plugin Test - update
playback 1

Cordova - Plugin Test - update playback

Cordova app - working with plugins - pause
button - part 4

pause a playing audio stream

need to be able to get the current playback position for the audio file

then update our $audioPosn property.

check audio position in the pauseAudio() method

use the getCurrentPosition() method

available on the media object...

$audio.getCurrentPosition(

 // success callback

 function (position) {

 if (position > -1) {

 $audioPosn = position;

 alert("pause playback at position: " + position + " secs");

 }

 }, // error callback

 function (e) {

 ...

 }

);

Image - Cordova app - Plugin Test - update
playback 2

Cordova - Plugin Test - update playback 2

Cordova app - working with plugins - pause
button - part 5

we can now successfully pause our audio playback

store value for current pause position in the audio stream

also need to update our audio playback

need to check current position in audio stream

//check current audio position

if ($audioPosn > 1) {

 $audio.seekTo($audioPosn*1000);

 $audio.play();

 alert("playback position: " + $audioPosn + " secs");

} else {

 $audio.play();

 alert("playback position: start...");

}

we updated the playAudio() method to check value of

$audioPosn property

now use value to seek to current position in audio stream

using seekTo() method exposed by media object itself...

method expects time in milliseconds

need to update value for our $audioPosn property, $audioPosn*1000

audio stream will now resume at correct position...

Image - Cordova app - Plugin Test - update
playback 3

Cordova - Plugin Test - update playback 3

Cordova app - working with plugins - update
stop button

final touch for now, at least with the buttons

need to update logic for app's stop button

need to reset the value of the $audioPosn property

if not, audio stream will always restart at set pause value

//stop audio file

function stopAudio() {

 //stop audio playback

 $audio.stop();

 //reset $audioPosn

 $audioPosn = 0;

 //release audio - important for android resources...

 $audio.release();

 //just for testing

 alert("stop playing audio...& release!");

}

Image - Cordova app - Plugin Test - update
playback 4

Cordova - Plugin Test - update playback 4

Cordova app - working with plugins - current
playback position

now seen how we can check the current position of a playing

audio file

many different options for outputting this value

e.g. appending its value to the DOM, showing a dialogue, and so on...

how we use the value of this property is up to us as developers

naturally informed by the requirements of the app

may only be necessary to use this value internally

help with the app's logic

may need to output this result to the user

Cordova app - working with plugins - further
considerations

A few updates and modifications for a media app

update logic for app

checks for event order, property values, &c.

indicate playback has started

without alerts...

update state of buttons in response to app state

highlights, colour updates...

inactive buttons and controls when not needed

update state of buttons...

grouping of buttons to represent media player

add correct icons, playback options...

metadata for audio file

title, artist, length of track...

image for track playing

thumbnail for track, album...

track description

notification for track playing

persist track data and choice in cache for reload...

...

Cordova app - working with plugins - add
splashscreen

add support for splashscreens in Cordova

install splashscreen plugin in project

cordova plugin add cordova-plugin-splashscreen

then we need to return to our config.xml file

set different splashscreens for different supported platforms

specify different images to use for given screen resolutions

Android example,

specifying different images for each screen density

then specify for portrait and landscape aspect ratios

URL for the src attribute is relative to the project's root

directory

not the customary www

<platform name="android">

 <!-- splashscreens - you can use any density that exists in the Android project

 <!-- landscape splashscreens -->

 <splash src="res/screen/android/splash-land-hdpi.png" density="land-hdpi"/>

 <splash src="res/screen/android/splash-land-ldpi.png" density="land-ldpi"/>

 <splash src="res/screen/android/splash-land-mdpi.png" density="land-mdpi"/>

 <splash src="res/screen/android/splash-land-xhdpi.png" density="land-xhdpi"/>

 <!-- portrait splashscreens -->

 <splash src="res/screen/android/splash-port-hdpi.png" density="port-hdpi"/>

 <splash src="res/screen/android/splash-port-ldpi.png" density="port-ldpi"/>

 <splash src="res/screen/android/splash-port-mdpi.png" density="port-mdpi"/>

 <splash src="res/screen/android/splash-port-xhdpi.png" density="port-xhdpi"/>

</platform>

Cordova app - working with plugins - add an
app icon

also set our own app's icon

again in the config.xml setting for the application

<platform name="android">

 <icon src="res/icon/android/ldpi.png" density="ldpi" />

 <icon src="res/icon/android/icon/mdpi.png" density="mdpi" />

 <icon src="res/icon/android/icon/hdpi.png" density="hdpi" />

 <icon src="res/icon/android/icon/xhdpi.png" density="xhdpi" />

</platform>

again, we can target specific platforms

useful way to handle different screen resolutions and densities

icon's URL is specified relative to the project's root directory

Image - Cordova app - Plugin Test 1 - getting
started

Cordova - Plugin Test - custom icon

Cordova app - working with plugins - Android
icon sizes for launcher

Density Launcher icon size

ldpi 36 x 36 px

mdpi 48 x 48 px

hdpi 72 x 72 px

xhdpi 96 x 96 px

and so on...

References

Carmody, Tim., Fighting Words: Defining "Mobile" and "Computer"

Wired. 11.08.2010. http://www.wired.com/2010/11/fighting-words-

defining-mobile-and-computer/

Cordova Doc

deviceready

Events

File plugin

Media plugin

Google Developers - Progressive Web Apps

http://www.wired.com/2010/11/fighting-words-defining-mobile-and-computer/
https://cordova.apache.org/docs/en/latest/cordova/events/events.html#deviceready
https://cordova.apache.org/docs/en/latest/cordova/events/events.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-file/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-media/
https://developers.google.com/web/progressive-web-apps/

