
Cordova	-	Guide	-	App	Architecture
Dr	Nick	Hayward

A	brief	overview	and	introduction	to	Apache	Cordova	application	architecture.

Contents

intro
JS	&	Web	plugins
Web	container
SDKs	and	OSs

Intro

Let's	start	working	our	way	through	Cordova	architecture,	and	then	app	design	and	development.

In	essence,	Cordova	can	be	thought	of	as	consisting	of	the	following	components

source	code	to	allow	us	to	build	a	native	application	container.	This	will	be	specific	to	the	mobile	platforms	we
choose	to	add	to	our	project,	for	example	Android,	iOS.	This	container	allows	us	to	render	the	web	application	on
the	native	device.	If	the	platform,	such	as	Firefox	OS,	natively	supports	a	web	application,	then	there	is	no	need
for	this	container.
then,	we	have	a	collection	of	various	APIs,	implemented	by	Cordova	as	plugins,	which	provide	a	web	application
running	within	the	container	access	to	native	device	functionality,	APIs,	and	applications.
Cordova	also	provides	a	useful	set	of	tools	that	help	us	manage	the	underlying	process	of	creating	an	application,
and	its	project	files,	managing	any	required	plugins,	building	our	native	applications,	using	the	native	SDK	of
course,	and	testing	our	application	with	emulators	and	associated	simulators.

Cordova	Design	-	architecture	-	diagram



JS	&	Web	plugins

In	the	previous	diagram,	the	outline	architecture	includes	the	option	for	JavaScript	only	plugins.	Whilst	we	normally
consider	JS	plugins	in	Cordova	as	simply	a	bridge	or	go-between	from	our	web	container	to	the	native	APIs,	a	useful
way	to	expose	native	device	functionality	to	the	web	application.	However,	we	can	also	use	and	develop	plugins
purely	in	JS.	We	can	add	an	existing	library,	to	help	with	data	visualisations,	graphics,	and	so	on,	and	we	can	create
our	own	focused	plugins	for	any	abstraction	of	application	features,	or	other	specific	requirements.

We've	also	noticed	in	recent	years	greater	support	for	native	functionality	at	the	web	application	level.	The	simple
support	for	touch	enabled	input	and	interaction	has	obviously	helped,	but	we	have	many	mobile	UI	libraries	natively
developed	in	JS.	We	also	have	access	to	a	growing	number	of	HTML5	APIs,	including	a	useful	implementation	of
service	workers	for	easier	development	of	offline	apps.

We'll	look	at	creating	a	JS	only	plugin	as	we	consider	plugin	development	later	in	the	semester.

Web	container

Whilst	Cordova	development	uses	many	of	the	same	underlying	technologies	as	standard	web	application
development,	there	are	a	few	limitations	relative	to	network	access	that	we	need	to	consider.

To	allow	us	to	develop	a	hybrid	mobile	application	with	Cordova,	a	web	application	needs	to	be	written	as	a	self-
contained	application.	In	effect,	it	needs	to	be	able	to	run	within	this	container	as	a	self-contained	application.	A



reliance	on	the	fetching	of	external	resources	for	a	complete	app	is	not	considered	particularly	good	practice,	and	will
naturally	be	an	issue	if	we	lose	a	network	connection.

So,	our	 index.html 	file	will	normally	be	the	only	HTML	file	we	use,	for	most	apps	at	least,	and,	as	we've	seen,	our
separate	pages	will	be	containers	within	this	file.

As	developers,	we	need	to	rethink	our	approach	to	building	such	mobile	web	stack	applications	to	help	us	leverage	the
inherent	capabilities	of	Cordova	instead	of	falling	back	on	old	web	development	habits.

With	self-contained	applications,	we	need	to	ensure	any	application	files	and	data	are	at	least	available	to	allow	the
application	to	launch	and	load	on	the	native	device.	In	effect,	a	basic	minimum	necessary	to	load	the	application	and
render	the	initial	UI.	If	necessary,	the	application	can	then	optionally	fetch	data	from,	and	generally	communicate,	with
a	remote	server.

Remember,	whilst	it's	possible	to	build	a	minimal	shell	for	our	application,	and	then	fetch	data	as	required	from	a
server,	it's	best	to	consider	this	an	option	when	we	are	unable	or	unwilling	to	store	application	data	and	functionality
within	the	container	or	on	the	native	device.

A	banking	app	is	a	good	example	of	this	type	of	limited	scope	app.	The	app	itself	is	able	to	load,	render,	and	show
options	to	the	user	without	a	network	connection.	However,	if	the	user	wishes	to	query	their	account,	make	a	payment
&c.,	they	will	need	to	authenticate	their	session	with	a	remote	server.

In	effect,	we	need	to	think	about	the	various	stages	of	the	design	of	the	container	for	our	applications,	and	tailor
accordingly.

SDKs	and	OSs

As	we	build	our	Cordova	applications,	regardless	of	whether	we	use	just	the	default	Cordova	APIs	or	many	additional
options,	each	app	still	has	to	be	packaged	into	a	native	application	to	allow	it	to	run	on	the	host	native	device.	Each
native	SDK	has	its	own	set	of	custom	or	proprietary	tools	for	building	and	packaging	their	native	applications.

Therefore,	to	be	able	to	build	our	Cordova	applications	for	a	native	device,	the	web	content	portion	of	the	app	is	added
to	a	project	applicable	to	the	chosen	mobile	platforms,	such	as	Android,	iOS,	and	Windows	10	Universal	Platform.	This
project	is	then	built	for	each	required	platform,	via	Cordova	CLI,	using	each	of	the	applicable	platform's	specific	set	of
tools	wrapped	in	a	Cordova	build	command.


