
Cordova	-	Guide	-	Custom	Plugins
Dr	Nick	Hayward

A	brief	overview	of	custom	plugin	development	for	Cordova.

Contents

intro
structure	and	design
architecture	-	Android
architecture	-	cross-platform
Plugman	utility
Test	plugin	1	-	JS	plugin
Test	plugin	2	-	Android	plugin
Summary	of	custom	plugin	development

intro

Developing	custom	plugins	for	Cordova,	and	by	association	your	apps,	is	a	useful	skill	to	learn	and	develop.	However,
it	should	be	noted	that	it	is	not	always	necessary	to	develop	a	custom	plugin	to	produce	a	successful	project	or
application.	It	will	be	dependent	upon	the	requirements	and	constraints	of	the	project	itself.

The	use	and	development	of	Cordova	plugins	is	not	a	recent	addition.	They've	been	available	within	the	project	for
many	years,	in	one	form	or	another.	With	the	advent	of	Cordova	3,	and	the	introduction	of	Plugman	and	the	Cordova
CLI,	plugins	have	started	to	change.	They	have	now	become	more	prevalent	in	their	usage	and	scope,	and	their
overall	implementation	has	become	more	standardised.

structure	and	design

As	we	start	developing	our	custom	plugins,	it	makes	sense	to	understand	the	structure	and	design	of	a	plugin.	In
effect,	what	makes	a	collection	of	files	a	plugin	for	use	within	our	applications.

In	essence,	we	can	think	of	a	plugin	as	a	set	of	files	that	as	a	group	extend	or	enhance	the	capabilities	of	a	Cordova
application.	We've	already	seen	a	number	of	examples	of	working	with	plugins,	each	one	installed	using	the	CLI,	and
its	functionality	exposed	by	a	JavaScript	interface.	Therefore,	whilst	a	plugin	could	interact	with	the	host	application
without	developer	input,	the	majority	of	plugin	designs	provide	access	to	the	underlying	API	to	provide	additional
functionality	for	an	application.

A	plugin	is,	therefore,	a	collection	of	contiguous	files	packaged	together	to	provide	additional	functionality	and	options
for	a	given	application.

Each	plugin	includes	a	 plugin.xml 	file,	which	describes	the	plugin,	and	informs	the	CLI	of	installation	directories	for
the	host	application.	In	effect,	where	to	copy	and	install	the	plugin's	components.	This	file	also	includes	the	option	to
specify	files	per	installation	platform,	again	via	the	CLI.	There	are	many	options	available	within	the	 plugin.xml 	file
to	help	customise	installation	and	setup	of	a	Cordova	plugin.

A	plugin	also	needs	at	least	one	JavaScript	source	file.	This	file	is	used	within	the	plugin	to	help	define	any	methods,
objects,	and	properties	that	are	required	by	the	plugin.	This	source	file	is,	therefore,	used	to	help	expose	the	plugins
API	to	the	developer	and	the	host	application.

Within	our	plugin	structure,	we	can	easily	contain	all	of	the	required	JS	code	in	one	file,	or	divide	into	multiple	files.
Such	structure	will	really	depend	on	the	complexity	and	underlying	dependencies	within	the	plugin	itself.

For	example,	we	might	choose	to	additionally	bundle	other	useful	jQuery	plugins,	handlebars.js.	maps	functionality,
and	so	on.



So,	beyond	the	requirement	for	a	plugin.xml	and	plugin	JS	source	file,	the	rest	of	the	plugin's	structure	is	simply
dependent	upon	the	nature	and	design	of	the	plugin	itself.	With	the	exception	of	JS-only	plugins,	we	will	usually	also
include	one	or	more	native	source	code	files	for	each	of	the	supported	mobile	platforms.	Each	plugin	may	also	include
additional	native	libraries,	or	required	content	such	as	stylesheets,	images,	media,	data	files,	and	so	on.

architecture	-	Android

For	our	plugins,	we	can	choose	to	support	one	or	multiple	platforms	for	an	application.

Therefore,	if	we	consider	a	plugin	for	Android,	we	can	follow	a	useful,	set	pattern	for	its	development.

The	application's	code	makes	a	call	to	the	specific	JS	library,	API,	for	that	particular	plugin.	This	plugin's	JS	then
sends	a	request	down	the	chain	to	the	specific	Java	code	written	for	supported	versions	of	Android.	It	is	this	Java	code
that	actually	communicates	with	the	native	device.	Upon	success,	any	return	is	then	similarly	passed	up	the	plugin
chain	to	the	app's	code	for	Cordova.

So,	we	have	a	bi-directional	flow	from	the	Cordova	app	to	the	native	device,	and	back	again.

Image	-	Cordova	Plugin	Architecture	-	Android

architecture	-	cross-platform

We	can,	of	course,	update	our	architecture	to	support	multiple	platforms	within	our	plugin	design.



We	maintain	the	same	exposed	app	content,	again	using	HTML,	CSS,	and	JavaScript.	We	also	maintain	the	same
JavaScript	library,	API	for	our	plugin.

However,	we	can	now	add	some	platform	specific	code	and	logic	for	iOS	devices.	We	add	the	Objective-C/Swift	code
at	the	same	level	as	the	Java	code	for	the	Android-only	plugin,	and	then	connect	to	the	user's	native	iOS	device.

The	inherent	benefit	of	this	type	of	plugin	architecture	is	the	JavaScript	library	for	the	plugin.	As	we	support	further
platforms,	the	JavaScript	library	for	the	plugin	should	not	need	to	change	per	platform.

Image	-	Cordova	Plugin	Architecture	-	Cross-platform

Plugman	utility

For	many	plugin	tasks	in	Cordova,	working	with	the	CLI	is	more	than	sufficient.	We	can	manage	the	installation	and
removal	of	plugins,	and	ensure	that	our	applications	are	working	fine.

As	a	quick	segue,	if	you	are	developing	Cordova	applications	using	the	platform-centric	workflow,	instead	of	the	cross-
platform	option,	it	might	be	worth	using	the	Plugman	tool.	We	can	also	use	this	tool	to	help	with	our	plugin
development,

it	helps	create	a	simple,	initial	template	for	building	our	plugins
we	can	add	or	remove	a	platform	from	a	custom	plugin
add	users	to	the	Cordova	plugin	registry
publish	our	custom	plugin	to	the	Cordova	plugin	registry
likewise,	unpublish	our	custom	plugin	from	the	Cordova	plugin	registry
search	for	plugins	in	the	Cordova	plugin	registry

We	can	now	use	this	tool	to	help	us	develop	our	custom	Cordova	plugin.



So,	we	now	need	to	install	Plugman	for	use	with	Cordova.	We	can	use	NPM	to	install	this	tool,

npm	install	-g	plugman

For	OS	X,	depending	upon	your	installation,	you	may	need	to	install	this	tool	using	the	 sudo 	command.

After	installing	Plugman,	we	can	use	it	to	start	creating	our	custom	Cordova	plugin.	It	helps	us	create	the	shell	for	our
plugin,	which	will	include	a	basic	structure,	default	files,	name,	and	associated	initial	metadata.

If	we	now	 cd 	to	the	directory	for	our	new	custom	plugin,	we	can	create	the	initial	template

plugman	create	--name	cordova-plugin-test	--plugin_id	org.csteach.plugin.Test	--
plugin_version	0.0.1

With	this	command,	we	are	setting	the	following	parameters	for	our	plugin

--name 	=	the	name	of	our	new	plugin
--plugin_id 	=	sets	an	ID	for	the	plugin
--plugin_version 	=	sets	the	version	number	for	the	plugin

We	can	also	choose	whether	to	add	optional	commands	for	additional	metadata,	such	as	author	or	description,	and
the	path	to	the	plugin.

We	now	have	a	new	directory	for	our	test	plugin,	which	contains	the	 plugin.xml 	file,	a	standard	 www 	directory,	and
a	 src 	directory.

Using	 plugman ,	we	can	also	add	any	supported	platforms	to	our	custom	plugin,

//	add	android
plugman	platform	add	--platform_name	android
//	add	ios
plugman	platform	add	--platform_name	ios

Again,	this	command	needs	to	run	from	the	working	directory	for	the	custom	plugin.	So,	we	now	have	our	template	in
place

|-	plugin.xml
|-	src
			|-	android
						|-	Test.java
|-	www
			|-	test.js

We	now	have	three	important	files	that	will	help	us	develop	our	custom	plugin.	The	 plugin.xml 	file	for	our	plugin's
general	definition,	settings	etc,	 Test.java ,	which	contains	the	initial	Android	code	for	the	plugin,	and	the	plugin's
JavaScript	API	in	the	 test.js 	file.

We	can	now	update	our	plugin's	definition	and	general	settings	in	the	 plugin.xml 	file.	This	configuration	file	helps
us	define	the	general	structure	of	our	plugin.

After	creating	a	template	for	our	plugin	using	Plugman,	the	Plugin.xml	file	includes	general	metadata,	details	for	the	JS
file	for	the	JS	API,	and	then	any	platform	specific	details,	including	native	source	code	for	the	plugin.

Within	the	 <plugin> 	element,	we	can	identify	our	plugin's	metadata,	including

<name> ,	 <description> ,	 <licence> ,	and	 <keywords

Then,	we	need	to	clearly	define	and	structure	our	JS	module.	This	simply	corresponds	to	a	JS	file	for	our	plugin,	but
it's	intrinsically	important	as	it	helps	expose	the	plugin's	underlying	JS	API.



One	of	the	more	important,	and	unusually	named,	elements	is	the	 <clobbers> 	element.	It	is	a	sub-element	of	
<js-module> ,	and	its	main	job	is	to	insert	the	JS	object	for	our	JS	API	into	the	application's	window.	In	effect,
expose	the	API	for	development.

We	can	update	the	 target 	attribute	for	this	element	to	reflect	this	required	exposure,	thereby	adding	a	window
value,

<clobbers	target="window.test"	/>

This	object	now	corresponds	to	the	object	defined	in	the	 www/test.js 	file,	and	is	exported	into	the	app's	window
object	as	 window.jsplugin .	So,	our	developers	will	now	be	able	to	access	the	underlying	plugin	API	using	this	
window.jsplugin 	object.

Test	plugin	1	-	JS	plugin

Whilst	the	vast	majority	of	Cordova	plugins	include	native	code,	for	platforms	such	as	Android,	iOS,	Windows
Phone...it	is	not	a	formal	requirement	for	such	plugins.	We	can,	of	course,	simply	develop	our	custom	plugin	using	just
JavaScript.	We	might	wish	to	create	a	custom	plugin	to	package	a	JavaScript	library,	or	a	combination	of	libraries,	to
create	a	structured	plugin	for	our	application.

So,	we'll	start	by	creating	a	simple	JavaScript	only	plugin	to	help	demonstrate	plugin	development,	and	general
preparation	and	usage.

We'll	need	to	quickly	update	our	 plugin.xml 	file	to	correctly	detail	our	new	plugin,

<description>output	a	daily	random	travel	note</description>

Let	us	now	start	to	modify	our	plugin's	main	JS	file,	 www/test.js .	We'll	be	using	this	JS	file	to	help	describe	the
plugin's	primary	JS	interface	that	a	developer	can	call	within	their	Cordova	application.	This	helps	them	leverage	the
options	for	the	installed	plugin.

So,	by	default,	when	Plugman	creates	a	template	for	our	custom	plugin	it	includes	the	following	JS	code	for	 test.js
file

var	exec	=	require('cordova/exec');

exports.coolMethod	=	function(arg0,	success,	error)	{
				exec(success,	error,	"test",	"coolMethod",	[arg0]);
};

Part	of	the	default	JS	code	is	created	based	upon	the	assumption	that	we	are	creating	a	native	plugin,	for	example	for
Android	or	iOS.	It	basically	loads	the	 exec 	library,	and	then	defines	an	export	for	a	JS	method	called	 coolMethod .
Therefore,	inside	this	export	structure,	the	code	is	trying	to	execute	a	native	method	called	 coolMethod() .	As	we
develop	a	native	code	based	plugin	for	Cordova,	we	would	need	to	provide	this	method	for	each	target	platform.

However,	as	we	are	currently	working	with	a	JS-only	plugin,	we	can	instead	simply	export	a	function	for	our	own
plugin.	In	effect,	our	plugin's	primary	functionality.

We	can	now	update	this	JS	file	for	our	custom	plugin	as	follows,

module.exports.dailyNote	=	function()	{
return	"a	daily	travel	note	to	inspire	a	holiday...";
}

So,	to	be	able	to	use	this	plugin,	a	Cordova	application	simply	calls	 test.dailyNote() ,	and	the	note	string	will	be
returned.

At	the	moment,	we	are	simply	exposing	one	test	method	through	the	available	custom	plugin.	We	could	easily	build
this	out,	and	expose	more	by	simply	adding	extra	exports	to	the	 jsplugin.js 	file.	We	can,	of	course,	also	add



further	JS	files	to	the	project,	which	can	export	functions	for	plugin	functionality.

At	the	moment,	we	are	simply	exposing	one	test	method	through	the	available	custom	plugin.	We	could	easily	build
this	out,	and	expose	more	by	simply	adding	extra	exports	to	the	 test.js 	file.	We	can,	of	course,	also	add	further	JS
files	to	the	project,	which	can	export	functions	for	plugin	functionality.

We	also	need	to	update	our	plugin	to	work	in	an	asynchronous	manner,	a	more	Cordova	like	request	pattern	for	a
plugin.	So,	when	the	API	is	called,	at	least	one	callback	function	needs	to	be	passed,	then	the	function	can	be
executed,	and	then	passed	the	resulting	value.	We	can,	therefore,	update	our	JS	plugin	as	follows,

module.exports	=	{

		//	get	daily	note
		dailyNote:	function()	{
						return	"a	daily	travel	note	to	inspire	a	holiday...";
		},

		//	get	daily	note	via	the	callback	function
		dailyNoteCall:	function	(noteCall)	{
				noteCall("a	daily	travel	note	to	inspire	a	holiday...");
		}
};

We	are	now	exposing	a	couple	of	options	for	requests	to	the	plugin.	A	Cordova	application	can	now	call	
dailyNote() ,	and	get	the	return	result	immediately.	or	it	can	call	 dailyNoteCall() 	and	get	the	result	passed	to
the	callback	function.

We	can,	therefore,	update	our	JS	plugin	as	follows,

module.exports	=	{

		//	get	daily	note
		dailyNote:	function()	{
						return	"a	daily	travel	note	to	inspire	a	holiday...";
		},

		//	get	daily	note	via	the	callback	function
		dailyNoteCall:	function	(noteCall)	{
				noteCall("a	daily	travel	note	to	inspire	a	holiday...");
		}
};

We	are	now	exposing	a	couple	of	options	for	requests	to	the	plugin.	A	Cordova	application	can	now	call	
dailyNote() ,	and	get	the	return	result	immediately.	or	it	can	call	 dailyNoteCall() 	and	get	the	result	passed	to
the	callback	function.

We	now	need	to	test	this	plugin,	and	make	sure	that	it	actually	works	as	planned.

So,	the	first	thing	we	need	to	do	is	create	a	simple	test	application.	We'll	follow	the	usual	pattern	for	creating	our	app
using	the	CLI,	add	our	default	template	files,	and	then	we	can	start	to	add	and	test	the	plugin	files.

cordova	create	customplugintest1	com.example.customplugintest1	customplugintest1

We	can	also	add	our	required	platforms,

cordova	platform	add	android

We	can	then	add	our	new	custom	plugin,

cordova	plugin	add	../custom-plugins/cordova-plugin-test



At	the	moment,	we	are	simply	installing	this	plugin	from	a	relative	local	directory.	When	you	publish	your	plugin	to	the
Cordova	plugin	registry	you	can,	of	course,	follow	the	familiar	pattern	for	installing	your	plugin.	For	example,	the	same
pattern	used	to	install	the	device,	media,	camera	etc	plugins.

If	we	now	check	the	installed	plugins	for	our	app,	we	should	see	our	custom	plugin	installed	and	ready	for	use.

cordova	plugins

Image	-	Cordova	Custom	Plugin

Within	our	test	application,	we	now	need	to	setup	our	home	page,	add	some	jQuery	to	handle	events,	and	then	call	the
exposed	functions	from	our	plugin.

So,	we'll	start	by	adding	some	buttons	to	the	home	page,

<button	id="dayNote">Daily	Note</button>
<button	id="dayNoteSync">Daily	Note	Async</button>

We	can	then	update	our	app's	 plugin.js 	file	to	include	the	logic	for	responding	to	button	events.	We	can	then	call
the	plugin's	exposed	functions	relative	to	the	requested	button.

Image	-	Cordova	Custom	Plugin

We	can	also	request	our	asynchronous	version	of	the	daily	note	function	from	the	plugin's	exposed	API.	Again,	we	can
add	an	event	handler	to	our	 plugin.js 	file,	which	will	respond	to	the	request	for	this	type	of	daily	note.

//handle	button	press	for	daily	note	-	async
$("#dayNoteSync").on("tap",	function(e)	{
		e.preventDefault();
		console.log("daily	note	async...");
		var	noteSync	=	test.dailyNoteCall(noteCallback);
});

we	can	then	add	the	callback	function

function	noteCallback(res)	{
		console.log("starting	daily	note	callback");
		var	noteOutput	=	"Today's	fun	asynchronous	note:	"+	res;
		console.log(noteOutput);
}

Image	-	Cordova	Custom	Plugin

Test	plugin	2	-	Android	plugin



We've	now	setup	and	tested	our	initial	JS	only	plugin	application.	Whilst	this	can	be	a	particularly	useful	way	to
develop	a	custom	plugin,	it's	often	necessary	to	create	one	using	the	native	SDK	for	a	chosen	platform.	For	example,
a	custom	Android	plugin.

So,	let	us	now	create	a	second	test	application,	and	then	start	building	our	test	custom	Android	plugin.	We'll	start	by
creating	our	new	test	application,

cordova	create	customplugintest2	com.example.customplugintest2	customplugintest2

and	then,	of	course,	adding	our	standard	template	for	a	basic	test	application.	We'll	then	start	to	design	and	develop
our	second	custom	plugin.

So,	with	our	test	application	setup	and	ready	for	use,	we	can	start	to	consider	developing	our	custom	Android	plugin.
Android	plugins	are	written	in	Java	for	the	native	SDK,	and	it	is	your	choice,	as	a	developer,	the	extent	to	which	you'd
like	to	leverage	the	functionality	of	the	native	SDK.

We'll	build	a	test	plugin	to	help	us	understand	the	process	for	working	with	the	native	SDK.	We'll	test	processing	user
input,	returning	some	output	to	the	user,	and	some	initial,	basic	error	handling	from	a	native	Java	based	plugin.

Let	us	now	consider	how	to	setup	and	configure	our	application	to	help	us	develop	a	native	Android	plugin.

As	mentioned	earlier,	there	are,	effectively,	three	parts	to	a	plugin	that	need	concern	us	as	developers.

|-	plugin.xml
|-	src
			|-	android
						|-	Test2.java
|-	www
			|-	test2.js

In	particular,	we	are	initially	concerned	with	developing	our	native	plugin	code	with	the	 Test2.java 	file.	So,	let's	build
another	plugin	for	our	second	test	application,

plugman	create	--name	cordova-plugin-test2	--plugin_id	org.csteach.plugin.Test2	--
plugin_version	0.0.1

and	we	can	then	add	our	required	platforms	for	development

//	add	android
plugman	platform	add	--platform_name	android

This	time,	we're	going	to	focus	upon	the	Android	platform	for	the	plugin.

Let's	start	to	build	our	native	Android	plugin.

We'll	begin	by	modifying	the	 Test2.java 	file.

The	first	thing	you'll	notice	with	a	Cordova	Android	plugin	are	a	couple	of	required	classes	for	working	with	Android-
based	plugins,

import	org.apache.cordova.CordovaPlugin;
import	org.apache.cordova.CallbackContext;

So,	our	Java	code	begins	by	simply	importing	required	classes	for	a	standard	plugin.	These	include,	for	example,	our
Cordova-specific	classes,	which	are	required	for	general	plugin	development.

With	our	required	classes	in	place,	we	can	now	start	to	build	our	plugin's	class.

We	can	start	by	creating	our	class,	which	will	extend	CordovaPlugin.



public	class	Test2	extends	CordovaPlugin	{
		...do	something	useful...
}

We	can	then	start	to	consider	the	internal	logic	for	the	plugin.	Each	Android	based	Cordova	plugin	requires	an	
execute() 	method.	This	is	run	whenever	our	Cordova	application	requires	interaction	or	communication	with	a
plugin.	As	such,	this	is	where	all	of	our	logic	will	be	run.

@Override
public	boolean	execute(String	action,	JSONArray	args,	CallbackContext	
callbackContext)	throws	JSONException	{
				if	(action.equals("coolMethod"))	{
								String	message	=	args.getString(0);
								this.coolMethod(message,	callbackContext);
								return	true;
				}
				return	false;
}

So,	this	is	the	default	method	the	Plugman	provides	each	time	you	create	an	initial	plugin.

So,	for	the	execute	method,	we	are	simply	passing	an	action	string,	which	effectively	tells	the	plugin	exactly	what	is
being	requested.

Our	plugin	uses	this	requested	action	to	basically	check	which	action	is	being	used	at	a	given	time.	For	example,
plugins	will	often	have	different	features.	The	code	within	our	 execute() 	method	needs	to	be	able	to	check	the
required	action.

So,	if	we	now	update	our	 execute() 	method,

@Override
public	boolean	execute(String	action,	JSONArray	args,	CallbackContext	
callbackContext)
throws	JSONException	{
				if	(ACTION_GET_NOTE.equals(action))	{
								JSONObject	arg_object	=	args.getJSONObject(0);
								String	note	=	arg_object.getString("note");
				}
				String	result	=	"Your	daily	note:	"+note;
				callbackContext.success(result);
				return	true;
}

With	our	updated	 execute() 	method,	if	the	request	action	is	 getNote ,	our	Java	code	will	basically	grab	the
requested	input	from	a	JSON	data	structure.

Our	current	test	plugin	has	a	single	input	value,	but	if	we	started	to	build	it	out,	thereby	requiring	additional	inputs,	we
could	simply	grab	them	from	the	JSON	as	well.

You'll	also	notice	that	we	have	some	basic	error	handling.	We're	able	to	leverage	the	default	 callbackContext
object	provided	by	the	standard	Cordova	plugin	API.	In	effect,	we're	able	to	simply	return	an	error	to	the	caller	if	an
invalid	action	is	requested.

One	of	the	good	things	about	developing	an	Android	plugin	for	Cordova	is	the	pattern	they	follow.	For	the	majority	of
examples,	any	Android	based	plugin	will	look	very	similar	to	this	example.	The	main	differences	will	normally	be	seen
within	the	 execute() 	method,	which,	as	noted	earlier,	is	the	main	engine	or	driving	force	behind	each	plugin.

So,	we	now	have	our	latest	version	of	the	Java	code	for	our	plugin.

package	org.csteach.plugin;
import	org.apache.cordova.CallbackContext;



import	org.apache.cordova.CordovaPlugin;
import	org.json.JSONArray;
import	org.json.JSONException;
import	org.json.JSONObject;

public	class	Test2	extends	CordovaPlugin	{

		public	static	final	String	ACTION_GET_NOTE	=	"dailyNote";

				@Override
				public	boolean	execute(String	action,	JSONArray	args,	CallbackContext	
callbackContext)
				throws	JSONException	{
								if	(ACTION_GET_NOTE.equals(action))	{
												JSONObject	arg_object	=	args.getJSONObject(0);
												String	note	=	arg_object.getString("note");
								String	result	=	"Your	daily	note:	"+note;
								callbackContext.success(result);
								return	true;
				}
				callbackContext.error("Invalid	action	requested");
				return	false;
				}
}

Now,	we	need	to	update	the	JavaScript	for	our	plugin,	which	helps	us	expose	the	API	for	the	plugin	itself.

So,	the	first	thing	we	need	to	do	is	create	a	primary,	or	top	level,	object	for	our	plugin.	We	can	then	use	this	to	store
the	APIs	needed	to	be	able	to	request	and	use	our	plugin.

var	noteplugin	=	{
...	do	something	useful...
}

module.exports	=	noteplugin;

Our	current	API	will	support	one	action,	our	 getNote 	action.

getNote:function(note,	successCallback,	errorCallback)	{
...again,	do	something	useful...
}

For	our	plugin,	the	communication	between	JavaScript	and	the	native	code	in	the	Android	plugin	will	be	performed
using	the	 cordova.exec 	method.

This	method	is	not	explicitly	defined	within	our	application	or	plugin.	Instead,	when	this	code	is,	in	effect,	run	within	the
context	of	our	Cordova	application,	the	 cordova 	object	itself,	and	the	required	 exec() 	method,	become	available.
They	are,	therefore,	part	of	the	default	structure	of	a	Cordova	application	and	plugin.

We	can	now	add	our	 cordova.exec() 	method.

cordov.exec	(
...add	something	useful...
);

We	can	now	pass	our	 exec() 	method	two	required	arguments,	which	simply	represent	necessary	code	for	success
and	failure.

In	our	current	example,	we	are	basically	telling	Cordova	how	to	react	to	a	given	user	action.	We	can	then	tell	Cordova
which	plugin	is	required,	and	which	to	call,	and	the	associated	action	to	pass	to	the	plugin.

We	also	need	to	pass	any	input	to	the	plugin.	So,	our	updated	 exec() 	method	is	as	follows,



cordova.exec(
		successCallback,
		errorCallback,
		'Test2',
		'getNote',
		[{
		"note":	note
		}]
);

Our	JavaScript	code	should	now	look	as	follows,

var	noteplugin	=	{

		getNote:function(note,	successCallback,	errorCallback)	{

				cordova.exec(
						successCallback,
						errorCallback,
						'Test2',
						'getNote',
						[{
								"note":	note
						}]
				);

		}
}

module.exports	=	noteplugin;

We	now	need	to	test	our	plugin	with	our	application.	So,	let's	update	our	home	page	to	allow	a	user	to	interact	with	our
new	custom	plugin.

We're	going	to	add	an	input	field	for	the	user	requested	note,	and	an	accompanying	button	to	submit	the	request	itself.

<input	type="text"	id="noteField"	placeHolder="daily	note">
<button	id="testButton">Test2</button>

The	exposed	plugin	API	will	be	able	to	respond	to	use	the	input	data	from	the	user	to	pass	to	the	native	Android
plugin.

Image	-	Cordova	Custom	Plugin	2



To	handle	this	input,	and	then	process	for	use	with	our	custom	plugin,	we'll	need	to	update	our	application's
JavaScript.

As	with	previous	Cordova	applications,	we	still	need	to	wait	for	the	 deviceready 	event	to	return	successfully,	and
then	we	can	start	to	work	with	our	user	input	and	custom	plugin.

As	we	saw	with	the	custom	JS	only	plugin,	our	native	Android	plugin's	API	is	similarly	exposed	using	the	window
object,

window.test2

So,	we	can	execute	it	from	our	application's	JS	as	follows,



windows.test2.getNote

We	can	then	pass	the	requested	note	data	to	the	API,	and	then	define	how	we're	going	to	work	with	success	and	error
handlers.	In	our	current	test	application,	we	can	simply	render	the	returned	value	to	the	application's	home	page.

window.test2.getNote(note,
		function(result)	{
				console.log("result	=	"+result);
				$("#note-output").html(result);
		},
		function(error)	{
				console.log("error	=	"+error);
				$("#note-output").html("Note	error:	"+error);
		}
);

So,	our	application's	JS	is	now	as	follows	for	the	 onDeviceReady() 	function

function	onDeviceReady()	{

//handle	button	press	for	daily	note	-	direct
$("#testButton").on("tap",	function(e)	{
		e.preventDefault();
		console.log("request	daily	note...");
		var	note	=	$("#noteField").val();
		console.log("requested	note	=	"+note);
		if	(note	===	"")	{
				return;
		}
		window.test2.getNote(note,
				function(result)	{
						console.log("result	=	"+result);
						$("#note-output").html(result);
				},
				function(error)	{
						console.log("error	=	"+error);
						$("#note-output").html("Note	error:	"+error);
				}
		);
});

}

Image	-	Cordova	Custom	Plugin	2



Summary	of	custom	plugin	development

So,	to	summarise	development	of	custom	plugins	for	Cordova.

an	initial	template	for	a	custom	plugin	can	be	created	using	the	Plugman	tool
create	JS	only	custom	plugins
create	native	SDK	plugins

eg:	Android,	iOS,	Windows	Phone...

custom	plugin	consists	of
plugin.xml



JavaSript	API
native	code

create	the	plugin	separate	from	the	application
then	add	to	an	application	for	testing
remove	to	make	changes,	then	add	again...


