
Notes	-	CSS	-	Flexbox
Dr	Nick	Hayward

A	general	intro	and	outline	for	using	flexbox	with	HTML5	compatible	apps.

Contents

intro
basic	usage
axes
flex	direction

flex	item	wrapping
flex-flow	shorthand

sizing	of	flex	items
minimum	size

flex	item	alignment
override	align	per	flex	item
justify	content	for	flex	item

order	flex	items
nesting	flex	containers	and	items

intro

CSS	Flexbox	helps	solve	many	issues	that	have	continued	to	plague	layout	and	positioning	of	HTML	elements	and
components	in	both	client-side	and	cross-platform	apps.

For	example,

vertical	and	horizontal	alignment
defining	a	centred	position	for	child	elements	relative	to	their	parent
equal	spacing	and	proportions	for	child	nodes	regardless	of	available	space
equal	heights	and	widths	for	varied	content
&	lots	more...

basic	usage

For	any	app	layout,	we	need	to	define	specific	elements	as	flexible	boxes.

i.e.	those	allowed	to	use	flexbox	in	a	given	app,	e.g.

section	{
		display:	flex;
}

This	CSS	ruleset	will	define	a	 section 	element	as	a	parent	flex	container.	Any	child	elements	may	now	accept	flex
declarations.

This	initial	declaration,	 display:	flex ,	also	includes	default	values	for	flexbox	layout	of	child	elements.

e.g.	 <div> 	elements	in	a	section	will,	by	default,	be	arranged	as	equal	sized	columns	with	the	same	initial	height.

axes



Elements	arranged	using	flexbox	are	laid	out	on	two	axes,

main	axis
axis	running	in	the	direction	of	the	currently	laid	out	flex	items
e.g.	rows	or	columns
start	and	end	of	axis	=	main	start	&	main	end

cross	axis
axis	running	perpendicular	to	the	current	main	axis
start	and	end	of	axis	=	cross	start	&	cross	end

Each	child	element	being	laid	out	inside	the	flex	container	is	called	a	flex	item.

flex	direction

We	can	set	a	property	for	the	flex	direction,	which	defines	direction	of	the	flex	items	relative	to	the	main	axis.	i.e.	the
layout	direction	for	the	child	elements.

Default	setting	is	 row ,	and	the	direction	will	be	relative	to	the	current	browser	language	setting.	e.g.	for	English
language	browsers	this	will	be	left	to	right.

section	{
		flex-direction:	column;
}

This	will	override	the	default	 row 	setting,	and	arrange	the	child	items	in	a	column.

So,	we	might	define	a	default	 section 	element	ruleset	as	follows,

section	{
		display:	flex;
		flex-direction:	column;
}

This	would	ensure	that	child	flex	items	were	1aid	out	in	a	single	column.

However,	we	might	override	specific	 section 	elements	to	allow	child	flex	items	in	a	 row 	direction.

e.g.

#tabs	{
		flex-direction:	row;
}

Image	-	Flex	direction



flex	item	wrapping

To	ensure	that	child	items	do	not	overlap	their	parent	flex	container,	we	may	add	a	declaration	for	 flex-wrap 	to	a
required	ruleset.

e.g.

#tabs	{
		flex-direction:	row;
		flex-wrap:	wrap;
}

So,	without	wrap

Image	-	No	flex	wrap



and,	with	wrap

Image	-	Flex	wrap



We	might	also	set	the	flex	direction	to	reverse,	which	will	start	the	flex	items	from	the	right	on	an	English	language
browser.

#tabs	{
		flex-direction:	row-reverse;
		flex-wrap:	wrap;
}

Image	-	Flex	direction	reverse



flex-flow 	shorthand

We	may	also	combine	direction	and	wrap	into	a	single	declaration,	 flex-flow ,	which	will	now	contain	values	for
both	 row 	and	 wrap .

e.g.

#tabs	{
		flex-flow:	row	wrap;
}

sizing	of	flex	items

For	each	flex	item,	we	may	need	to	specify	apportioned	space	in	the	layout.

If	we	wanted	to	set	space	as	an	equal	proportion	for	each	flex	item,	we	may	add	the	following	to	a	child	item	ruleset,

div.fTab	{
		flex:	1;
}

This	defines	each	child	flex	item	 <div	class="fTab"> 	to	occupy	an	equal	amount	of	space,	after	considering
margin	and	padding,	within	the	given	row.

n.b.	this	value	is	proportional,	so	it	doesn't	matter	if	the	value	is	1	or	100	&c.

However,	we	may	define	additional	flex	proportions	for	specific	child	items.	e.g.

div.fTab:nth-child(odd)	{
		flex:	2;
}



This	means	that	each	odd	flex-item	will	now	occupy	twice	the	available	space	in	the	current	direction.

Image	-	Flex	item	sizing

minimum	size

We	may	then	set	a	minimum	size	for	a	flex	item,	e.g.

div.fTab	{
		flex:	1	100px;
}

or	a	relative	unit	for	the	size,

div.fTab	{
		flex:	1	20%;
}

This	means	each	flex	item	will	initially	be	given	a	minimum	of	 20% 	of	the	available	space.	Then,	the	remaining	space
will	be	defined	relative	to	proportion	units.

Image	-	Flex	item	sizing



flex	item	alignment

Flexbox	also	allows	us	to	define	alignment	for	flex	items	in	each	flex	container,	relative	to	the	main	and	cross	axes.

For	example,	we	might	want	to	specify	a	centred	alignment	for	flex	items,

#tabs	{
		flex-direction:	row;
		flex-wrap:	wrap;
		align-items:	center;
}

So,	 align-items:	center 	will	cause	the	flex	item	in	the	flex	container	to	be	centred	along	the	cross	axis.	However,
they'll	still	maintain	their	basic	dimensions.

We	can	also	modify	the	value	for	 align-items 	to	either	 flex-start 	or	 flex-end .	As	expected,	such	values	will
align	flex	items	to	either	the	start	or	end	of	the	cross	axis.

override	align	per	flex	item

As	with	 flex ,	we	can	also	override	alignment	per	flex	item.	Using	the	 align-self 	property,	we	may	add	a	value
for	positioning.

e.g.	a	sample	declaration	might	be	as	follows

div.fTab:nth-child(even)	{
		flex:	2;
		align-self:	flex-end;
}

justify	content	for	flex	item



We	may	also	specify	 justify-content 	for	flex	items	in	a	flex	container.

This	property	allows	us	to	define	the	position	of	a	flex	item	relative	to	the	main	axis.

The	default	value	is	 flex-start ,	and	we	then	modify	it	relative	to	one	of	the	following

flex-end

center

space-around
distributes	each	flex	item	evenly	along	main	axis	with	space	at	either	end

space-between
same	as	 space-around 	without	space	at	either	end...

alignment	per	axis

In	effect,	we	may	define	alignment	relative	to	each	axis	using	a	specific	declaration.

For	example,	for	the	main	we	may	use	 justify-content 	and	for	the	cross	axis	we	use	 align-items .

order	flex	items

We	may	also	modify	the	layout	order	of	flex	items	without	directly	changing	the	underlying	source	order.

n.b.	yet	another	modification	we	can't	do	with	traditional	CSS	layout	options...

We	use	the	following	pattern	to	specify	order,

div.fTab:first-child	{
		order:	1;
}

So,	the	first	flex	item	will	now	move	to	the	end	of	the	tab	list.

Image	-	Flex	item	order

This	is	due	to	the	default	order	for	flex	items.	By	default,	all	flex	items	have	an	 order 	value	set	to	 0 .



So,	the	higher	the	 order 	value,	the	later	the	item	will	appear	in	the	list	&c.

Items	with	the	same	order	will	revert	to	the	order	in	the	source	code.

It's	also	possible	to	ensure	that	certain	items	will	always	appear	first,	or	at	least	before	default	 order 	values,	by	using
a	negative	value	for	the	 order 	declaration.

e.g.

div.fTab:last-child	{
		order:	-1;
}

nesting	flex	containers	and	items

Flexbox	can	also	be	used	to	create	nested	patterns	and	structures.

For	example,	we	may	set	a	flex	item	as	a	flex	container	for	its	child	nodes.

e.g.	we	might	add	a	banner	to	the	top	of	a	page,

<section	id="banner">
		<header	id="page-header">
				<h3>spire	and	the	signpost</h3>
				<h5>point	to	the	stars...</h5>
		</header>
		<section	id="search">
				<input	type="text"	id="searchBox"/>
				<button	id="searchBtn">Search</button>
		</section>
</section>

For	this	HTML,	we	may	set	 #banner ,	 #page-header ,	and	 #search 	as	flex	containers.	e.g.

#search	{
		display:	flex;
}

We	may	then	specify	various	declarations	for	 #search ,	e.g.

#search	{
		display:	flex;
		flex-direction:	row;
		flex:	2;
		align-self:	flex-start;
}

which	will	include	values	for	itself	and	any	child	elements.

So,	if	we	then	add	some	rulesets	for	the	nested	flex	items,	e.g.

#searchBox	{
		flex:	4;
}

#searchBtn	{
		flex:	1;
}

we	get	a	simple	proportional	split	of	 4:1 	for	the	input	field	to	the	button.



Image	-	Nested	flex	containers

Reference

MDN	-	CSS	FLexbox

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox

