
Extra	Notes	-	Data	Stores	&	APIs	-	using	MongoDB	and	native	driver
Dr	Nick	Hayward

Contents

intro
install	MongoDB
running	MongoDB
using	MongoDB
Robo	3T
basic	intro	to	NoSQL
connect	to	MongoDB	from	Node.js
MongoDB	ObjectId
ES6	-	destructuring	objects
fetch	data	from	MongoDB
delete	data	from	MongoDB
update	data	in	MongoDB

Data	stores	and	APIs	-	using	MongoDB	and	native	driver	-	intro

As	we	build	out	our	Node.js	apps,	we	can	start	to	add	persistence	to	the	data	with	the	addition	of	data	stores.

This	primarily	includes,	but	is	not	limited	to,	NoSQL	data	stores	such	as	MongoDB.	We	can	then	use	modules	such	as
Mongoose	to	help	connect,	query,	and	structure	how	our	apps	work	with	MongoDB.

We	can	also	create	our	own	custom	REST	APIs	for	Node.js	based	web	apps,	offering	various	routes	for	GET,	POST,
PUT,	DELETE,	AND	UPDATE.

data	stores	-	install	mongodb

Further	information	on	MongoDB	is	available	at	the	following	URL,

https://www.mongodb.com

Direct	downloads	are	available	from	this	site	for	Windows,	Linux,	and	OS	X.	Download	the	latest	MongoDB
Community	Edition	executable	for	your	OS,	and	click	install.

Further	details	on	installing	MongoDB	can	be	found	at	the	following	URL,

https://docs.mongodb.com/manual/installation/

including	OS	specific	help	docs.

On	OS	X,	it's	also	possible	to	install	using	Homebrew,

brew	update
brew	install	mongodb

Unless	specifically	set,	MongoDB	will	set	a	data	directory	for	the	installed	DBs	at	 /data/db/ .

It	will	also	use	this	directory	to	store	 *.data 	files	for	the	current	MongoDB	install.

data	stores	-	running	mongodb

We	can	start	the	daemon	for	MongoDB	using	the	following	terminal	command,

mongod

This	command	will	output	some	debug	information,	and	the	final	line	will	usually	detail	network	information,	including
the	port	number	waiting	for	connections.	This	means	the	daemon	is	running	OK,	and	is	now	ready	for	connections.

With	the	daemon	running,	we	can	then	connect	to	MongoDB	using	the	following	terminal	command,

mongo

With	the	DB	running,	and	a	client	connected,	we	can	then	start	to	query,	update,	monitor,	maintain	&c.	our	installed
MongoDB	databases.

n.b.	it's	also	possible	to	specify	a	custom	 data 	directory	for	local	databases,	e.g.

mongod	--dbpath	~/dev-data/mongo-data

This	would	start	the	MongoDB	daemon	and	specify	a	working	data	directory	in	the	home	directory.

data	stores	-	using	MongoDB

We	can	now	add	a	DB,	some	initial	content,	query	for	results,	and	so	on.

For	example,	if	we	wanted	to	add	some	initial	data,	we	can	use	the	following	command,

db.NodeTodo.insert({text:	'our	first	todo	item'})

We	can	then	query	the	 NoteTodo 	DB	for	all	current	data,

db.NodeTodo.find()

This	query	will	return	the	following	type	of	output,	e.g.

{	"_id"	:	ObjectId("5970f5384aadb18eed551dc5"),	"text"	:	"our	first	todo	item..."	}

This	is	an	object,	which	includes	a	unique	ID	for	this	record,	and	the	name:value	pair	we	just	inserted.

data	stores	-	Robo	3T	MongoDB	GUI

We	can	also	install	a	GUI,	Robo	3T	(formerly	Robomongo),	for	managing	MongoDB,

https://robomongo.org/

Download	and	install	the	applicable	package	for	your	current	OS,	including	Windows,	Linux,	and	OS	X,

https://robomongo.org/download

data	stores	-	basic	intro	to	NoSQL

So,	what	is	NoSQL?	In	particular,	it's	often	useful	to	consider	NoSQL	against	a	familiar	SQL	database	structure.	e.g.

SQL	Structure NoSQL	Structure

database database

table	-	users collection	-	e.g.	a	library

row	/	records	-	user document	-	e.g.	a	book

column	-	userID,	name field	-	e.g.	author,	title

data	stores	-	connect	to	MongoDB	from	Node.js

We	can	test	using	MongoDB	with	Node.js	by	creating	an	initial	API.

To	connect	to	MongoDB	from	Node.js,	there	are	various	options	available	including	a	driver	provided	by	the
developers	of	MongoDB,	node	mongodb	native.	URL	is	as	follows,

https://mongodb.github.io/node-mongodb-native/

We'll	create	our	api,	e.g.	 node-todo-api/ ,	and	setup	an	initial	Node.js	app,

npm	init

We'll	then	add	a	separate	directory	for	ongoing	MongoDB	tests,	 mongo-tests ,	at	the	root	of	the	 node-todo-api
directory.

We	can	also	install	the	Mongo	Client	itself	using	NPM,

npm	install	mongodb	--save

We	can	then	add	a	test	connect	script	to	this	 mongo-tests 	directory,	e.g.	 mongodb-connect.js

/	mongodb	client
const	client	=	require('mongodb').MongoClient;

//	client	connect	-	parameters	=	url	and	callback	function
client.connect('mongodb://localhost:27017/NodeTodo',	(err,	db)	=>	{	//	handle	error	
and	db	connection
		//	handle	return	errors	for	connection
		if	(err)	{
				return	console.log("connection	to	mongodb	failed...");	//	return	-	causes	exit	
from	function...
		}
		console.log("now	connected	to	mongodb...");

		//	close	connection	to	mongodb
		db.close()
});

So,	we've	successfully	connected	to	the	local	running	MongoDB	daemon,	specified	a	DB	name,	and	then	closed	the
connection.	However,	MongoDB	will	not	create	a	new	DB	unless	we	specify	some	data	to	write.	i.e.	Mongo	will	not
create	an	empty	DB,	which	we	can	then	populate	later.	(this	is	in	contrast	to	other	DBs	such	as	SQL...).

If	we	want	to	save	some	content	to	a	new	DB,	we'll	need	to	add	a	collection,	and	specify	the	content	to	save,	e.g.

...
db.collection('TodoItems').insertOne	({
		text:	'a	simple	todo	item...',
		completed:	false
},	(err,	result)	=>	{
		if	(err)	{
				return	console.log('error	returned	for	insert',	err);
		}
		console.log('todo	successfully	saved',	JSON.stringify(result.ops,	undefined,	2));	
//	log	output	to	console
});
...

The	first	time	we	call	this	updated	code,	we	can	now	connect	to	MongoDB,	create	a	new	DB,	add	a	collection,	and
then	save	a	document	with	some	JSON	data	for	a	single	todo	item.

insertOne 	will	add	a	single	document	to	the	specified	collection.	It	accepts	two	arguments,	including	an	object	for
the	single	document,	and	a	callback	function	with	a	return	error	or	success	response.	The	callback	function	will	be
executed	for	either	of	the	error	or	success	response,	and	we	can	add	some	code	to	execute	to	handle	either	scenario.
In	this	example,	we	can	log	to	the	console	a	returned	error,	and	a	simple	message	for	the	success	response	with	the
document	saved.

data	stores	-	MongoDB	ObjectId

One	of	the	interesting	aspects	of	working	with	documents	in	MongoDB	is	its	use	of	ObjectId	per	document.	e.g.

[
		{
				"name":	"winifred",
				"location":	"devon",
				"_id":	"5973b06480ba9c0bacce7314"
		}
]

For	this	new	document,	MongoDB	has	automatically	created	an	 _id 	value.	This	is	not	an	auto-incremented	value,
such	as	SQL.

So,	the	 _id 	value	is	random,	and	not	reliant	on	knowing	the	previous	incremented	value.	This	means	we	can	quickly
and	easily	scale	DBs	and	servers	without	having	to	reference	or	check	other	existing	DBs	and	servers.	In	effect,
implementations	of	MongoDB	can	be	separate	nodes	of	an	overall,	scaled	system.

The	ObjectId	constitute	a	few	separate	parts,	contained	within	a	12	byte	value.	For	example,	these	include

a	timestamp	for	the	moment	the	 _id 	was	created
the	first	4	bytes	within	the	 _id

machine	identifier	for	the	host	of	the	DB	where	the	 _id 	was	created
next	3	bytes

process	ID	-	another	way	to	create	a	unique	identifier
next	2	bytes	in	the	overall	 _id 	value

a	counter	value	for	the	item
takes	up	the	final	3	bytes	within	the	 _id 	value

However,	this	structure	is	the	default	for	the	 _id .	This	is	not	fixed,	and	a	developer	may	set	this	 _id 	as	required.

As	a	document	is	inserted	into	a	collection	in	a	DB,	we	can	also	specify	our	own	custom	 _id .	It	could	be	as	simple
as	 day123 	&c.

For	the	generated	ObjectId,	we	can	log	to	the	console	the	generated	ObjectId,	e.g.

...
console.log(result.ops[0]._id);	//	use	first	inserted	document	-	retrieve	the	
generated	_id
...

We	can	then	extract	the	timestamp	from	the	first	4	bytes.	e.g.

console.log(result.ops[0]._id.getTimestamp());	//	use	first	inserted	document	-	get	
time	stamp	from	first	4	bytes...

So,	this	will	return	a	timestamp	in	GMT,	e.g.	 2017-07-23T14:37:05.000Z .

ES6	-	destructuring	objects

Another	new	feature	of	ES6	is	a	shorthand	way	to	extract	a	value	from	an	object	based	upon	its	name,	and	then	save
to	a	variable.	e.g.

var	authors	=	{
		name:	'emma',
		books:	7,
		location:	'uk'
};

var	{name}	=	authors;
console.log(name);

So,	we	can	quickly	access	an	object	value,	and	save	it	to	a	matching	variable.	This	new	variable	can	be	used	as
expected	within	the	app's	logic.

We	can	also	use	destructuring	to	get	any	properties	from	a	specified	object,	e.g.

const	{MongoClient,	ObjectID}	=	require('mongodb');

So,	the	variables	are	now	being	set	relative	to	the	specified	properties	for	the	MongoDB	module.

data	stores	-	fetch	data	from	MongoDB

Fetching	data,	such	as	a	note	or	single	todo	item	or	simply	all	documents.

e.g.	we	might	fetch	all	documents	from	a	specified	collection,

db.collection('Todos').find()

The	 find() 	method	on	the	collection	 Todos 	returns	a	cursor,	a	pointer	to	all	of	the	available	documents.	A	cursor
has	many	methods	available,	and	we	use	them	to	fetch	all	or	any	of	the	available	documents.	It	also	returns	a
promise,	which	we	can	then	use.	e.g.

db.collection(`Todos`).find().toArray().then((docs)	=>	{
		//	log	docs	to	console
		console.log(JSON.stringify(docs,	undefined,	2));
},	(err)	=>	{
		console.log('error	in	fetch	documents',	err);
});

So,	an	example	method	on	 find() 	is	 toArray() .	This	returns	the	document	data	from	the	collection	as	an	array
instead	of	the	cursor.

[
		{
				"_id":	"5973abfa23a0560b7351bbe0",
				"text":	"walk	the	Inca	trail...",
				"completed":	false
		},
		{
				"_id":	"5975dde85ac520dc59d77448",
				"text":	"sail	around	the	world...",
				"completed":	false
		},
		{
				"_id":	"5975e6b15ac520dc59d77525",
				"text":	"visit	the	Grand	Canyon...",

				"completed":	true
		}
]

So,	all	documents	have	now	been	returned.	We	might	then	want	to	only	return	documents	that	have	been	completed
or	not.

//	connect	to	collection	-	find	documents	by	query	-	e.g.	completed:	false
db.collection('Todos').find({completed:	false}).toArray().then((docs)	=>	{
		...
});

We're	now	querying	the	Todos	collection	for	all	documents	with	a	name:value	pair	matching	 completed:	false .
However,	if	we	want	to	query	by	a	specific	ObjectId,	we	have	to	create	it	first	instead	of	simply	copying	and	pasting	the
existing	string.	e.g.	we	create	the	 _id 	as	follows,

_id:	new	ObjectID('5975e6b15ac520dc59d77525')

So,	we	still	need	to	know	the	existing	string	value,	but	it	needs	to	be	structured	as	an	ObjectID	value	that	MongoDB
will	recognise	and	use	to	search	the	specified	collection.	We	can	then	pass	this	 _id 	to	the	 find() 	method	and
query	MongoDB.

Lots	of	other	methods	are	available	for	the	cursor	in	MongoDB,

mongodb.github.io/node-mongodb-native/2.2/api/Cursor.html

Some	popular	methods	include	 count() ,	which	can	be	used	as	follows,

//	connect	to	collection	-	use	count	method	on	cursor
db.collection('Todos').find().count().then((count)	=>	{
		//	log	count	total	to	console
		console.log(`Total	todos	=	${count}`);
},	(err)	=>	{
		console.log('error	in	count	of	documents',	err);
});

So,	we	get	a	return	total	for	the	number	of	documents	in	the	specified	collection.

data	stores	-	delete	data	in	MongoDB

We	can	start	by	querying	MongoDB,	and	then	deleting	any	duplicate	documents.	e.g.

db.collection('Todos').deleteMany({text:	'sail	around	the	world...'})

As	MongoDB	is	returning	a	promise	object,	we	can	also	add	a	 then() 	method	with	a	success	and	fail	callback,	e.g.

db.collection('Todos').deleteMany({text:	'sail	around	the	world...'}).then((result)	
=>	{
		console.log(result);	//	result	object	returned	for	deletion
},	(err)	=>	{
		console.log('error	in	deletion...',	err);
});

We	can	log	to	the	console	the	return	 result 	object.	This	helps	us	check	the	deletion	and	return	from	MongoDB.
However,	this	will	also	return	a	lot	of	data	for	the	single	execution.	The	main	point	of	interest	is,

CommandResult	{
result:	{n:	4,	ok:	1},
...
}

This	basically	tells	us	the	number	of	documents	deleted,	and	that	the	request	was	successful.

Likewise,	we	can	delete	a	single	document	as	follows,	e.g.

db.collection('Todos').deleteOne({text:	'visit	Antarctica'}).then((result)	=>	{
		console.log(result);	//	result	object	returned	for	deletion
},	(err)	=>	{
		console.log('error	in	deletion...',	err);
});

This	will	delete	the	first	document	that	matches	the	passed	name:value	pair.

Another	popular	method	is	 findOneAndDelete() ,	which	returns	the	data	of	the	document	and	then	deletes	it	from
the	collection,	e.g.

db.collection('Todos').findOneAndDelete({completed:	false}).then((result)	=>	{
		console.log(result);
});

This	will	find	the	first	document	that	matches	the	passed	name:value	pair,	return	the	data,	and	then	delete	that	first
matched	document.	The	return	 result 	object	will	return	data	for	the	document	just	deleted,	e.g.

{	lastErrorObject:	{	n:	1	},
		value:
			{	_id:	5973abfa23a0560b7351bbe0,
					text:	'walk	the	Inca	trail...',
					completed:	false	},
		ok:	1	}

The	 value{} 	object	can	then	be	used	to	inform	a	user,	for	example,	of	the	document	that	has	just	been	deleted	&c.

data	stores	-	update	data	in	MongoDB

We	can	now	update	data	in	a	specified	collection	in	MongoDB,	including	a	single	document	to	update.

We	can	start	with	the	collection	method,	 findOneAndUpdate() ,	which	expects	multiple	parameters.	e.g.

findOneAndUpdate(filter,	update,	options,	callback)

and	then	returns	a	promise	for	the	updated	document.	So,	we	might	use	this	method	as	follows,

db.collection('Todos').findOneAndUpdate({
		_id:	new	ObjectID("5975e6b15ac520dc59d77525")
},	{
		//	use	update	operator	-	items	to	actually	update	for	matched	document
		$set:	{
				completed:true
		}
},	{
		//	specify	options	-	e.g.	whether	to	return	original	document	or	not...
		returnOriginal:	false
}).then((result)	=>	{
		console.log(result);
});

This	will	now	update	the	specified	document,	and	return	the	updated	data.	e.g.

{	lastErrorObject:	{	updatedExisting:	true,	n:	1	},
		value:
			{	_id:	5975e6b15ac520dc59d77525,

					text:	'visit	the	Grand	Canyon...',
					completed:	true	},
		ok:	1	}

We	might	choose	to	return	just	the	updated	data,	e.g.

console.log(`updated	document:	${JSON.stringify(result.value,	undefined,	2)}`);

We	might	also	add	a	further	property	to	update	the	document,	such	as	incrementing	a	given	value.	e.g.

db.collection('Todos').findOneAndUpdate({
		_id:	new	ObjectID("597731be14ac1af4c0f16fe3")
},	{
		//	use	update	operator	-	items	to	actually	update	for	matched	document
		$set:	{
				completed:true
		},
		//	use	increment	operator	-	specify	value	to	increment	by,	e.g.	-1,	1,	2	&c.
		$inc:	{
				members:	1
		}
},	{
		//	specify	options	-	e.g.	whether	to	return	original	document	or	not...
		returnOriginal:	false
}).then((result)	=>	{
		console.log(result);
});

