
Grunt - Project Outline - Setup & Usage

Dr Nick Hayward

A sample outline for using Grunt with project development, testing, &c.

Contents

Intro
Initial setup and install

install and configure Grunt
Grunt config

Gruntfile.js - initial exports
Gruntfile.js - use tasks
Gruntfile.js - register custom task
Gruntfile.js - register builds

Development with environments
environment setup - development
environment setup - development Grunt config
encrypt with RSA public key
sign and verify a file
environment setup - hosted solutions

Merging config sources
sample waterfall with nconf

Continuous development
add a watch
live reload
monitor node

Add CSS support
Watch update

Intro

We may consider Grunt, and other task runners and build tools, relative to build distributions and development
environments.

Initial setup and install

For a new project, we may begin by initialising a Git repository in the root directory.

We'll also add a .gitignore file to our local repository. This allows us to define files and directories not
monitored by Git's version control.

Then, we initialise a new NodeJS based project using NPM. Defaults for npm init are initially fine for a
standard project,

npm init

As the project develops and matures, we may modify accordingly this initial metadata.

Basic project layout may follow a sample directory structure,

.
|-- build
| |-- css
| |-- img
| |-- js
|-- src
| |-- assets
| |-- css
| |-- js
| |__ app.js
|-- temp
|-- testing
|__ index.html //applicable for client-side, webview apps &c.

This sample needs to be modified relative to a given project, and build, temp, and testing will include files
and generated content from various build tasks.

The build and temp directories will be created and cleaned automatically as part of the build tasks. They do
not need to be created as part of the initial directory structure.

This example structure adds an index.html file to the root of the project structure for client-side and webview
based development, and then references the appropriate directory for each environment.

This structure includes build directories, which we may not add until build tasks for a release distribution.
These commonly include bundling, minification, uglifying, &c. Again, the build directory will be part of a build
task.

We may also update our project's .gitignore file,

.DS_Store
node_modules/
*.log
build/
temp/

install and configure Grunt

We can start by installing and configuring Grunt for the above sample project structure

npm install grunt --save-dev

This install assumes a global scope for the NPM package grunt-cli, and saves the metadata to
package.json for development builds only.

Grunt config

To use Grunt with a project, we add a config file, Gruntfile.js, which includes initial exports for tasks and
targets.

Then, we may load and register the required tasks.

Gruntfile.js - initial exports

Grunt config is again dependent on the specifics of a particular project.

However, we may add some common options for linting, build distributions, minification and bundling, uglifying,
sprites &c.

module.exports = function(grunt) {
 grunt.initConfig(
 {
 jshint: {
 all: ['src/**/*.js'],
 options: {
 'esversion': 6,
 'globalstrict': true,
 'devel': true,
 'browser': true
 }
 },
 rollup: {
 release: {
 options: {},
 files: {
 'temp/js/rolled.js': ['src/js/main.js'],
 },
 }
 },
 uglify: {
 release: {
 files: {
 'build/js/mini.js':
'temp/js/*.js'
 },
 }
 },
 sprite: {
 release: {
 src: 'src/assets/images/*',
 dest: 'build/img/icons.png',
 destCss: 'build/css/icons.css'
 }
 },

 clean: {
 folder: ['temp'],
 }
 }
);

};

Use of rollup will depend upon required support for modules, including ES modules within JavaScript apps.

Then, we may add custom tasks such as metadata generation,

buildMeta: {
 options: {
 file: './meta.md',
 developer: 'debug tester',
 build: 'debug'
 }
},

We may add tasks for CSS &c. as we continue to develop the project.

Gruntfile.js - use tasks

After defining the exports for tasks and targets, we can load the required Grunt plugin modules, and register the
required tasks.

We may run these registered tasks together or separately relative to distribution and environment.

For example, we can load the required plugins for the above tasks,

// linting, module bundling, minification, directory cleanup...
grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-rollup');
grunt.loadNpmTasks('grunt-contrib-uglify-es');
grunt.loadNpmTasks('grunt-spritesmith');
grunt.loadNpmTasks('grunt-contrib-clean');

These correspond to the plugin packages installed using NPM for the current project.

npm install grunt-contrib-jshint --save-dev
npm install grunt-rollup --save-dev
npm install grunt-contrib-uglify-es --save-dev
npm install grunt-spritesmith --save-dev
npm install grunt-contrib-clean --save-dev

Gruntfile.js - register custom task

We can then register a custom task for various targets in the builds.

For example,

// custom task - build meta for default debug
grunt.registerTask('buildMeta', function() {
 console.log('debug build...');
 const options = this.options();
 metaBuilder(options);
});

//custom task - build meta for release
grunt.registerTask('buildMeta:release', function() {
 console.log('release build...');
 // define task options - incl. defaults
 const options = this.options({
 file: 'build/release_meta.md',
 developer: "spire & signpost",
 build: "release"
 });
 metaBuilder(options);
});

Gruntfile.js - register builds

We can then register some build tasks, which combine the options from the config. This provides the execution
of staggered tasks for a single build call.

For example, a debug build may include linting, custom metadata, and a clean task

// debug build tasks - default tasks during development...
grunt.registerTask('build:debug', ['jshint', 'buildMeta', 'clean']);

This may be followed by a build process for staging or release,

// build tasks with specific 'release' targets...
grunt.registerTask('build:release', ['jshint', 'rollup:release',
'uglify:release', 'sprite:release', 'buildMeta:release', 'clean']);

Then, we may run and test Grunt for the current project,

grunt build:debug

or

grunt build:release

relative to project requirements.

Development with environments

As we develop more complex apps, we need to consider how we configure and use such build tools with various
environments.

development
staging
production / release

We can fit either a debug or release distribution build into each of these environments.

environment setup - development

App development will primarily focus on a debug distribution to provide tasks such as linting, testing, metadata,
watch, &c. This will become the common distribution for active, ongoing development.

We also need to ensure that environment variables are aggregated to allow the app to run. These may be stored
in the same manner regardless of debug or release. The difference is the use of encryption, and the nature of
the required environment configs.

Bundling with minification and uglifying will usually be added to a project as part of the release distribution. It
serves little practical benefit for ongoing active development of a project's code base.

So, we may define a common structure for Node based apps as follows

.
|-- debug
|-- src
| |-- assets
| |-- js
|-- temp
|-- testing
|__ app.js

We can develop the app, including the app source code, in the src directory. Then, we may build our app in the
debug directory each time we need to check and debug usage.

Any temporary build artifacts may be added to the temp directory, and then cleaned after each build workflow
has been completed. In effect, each time we complete a call to build:debug, we may clean, where applicable,
the build artifacts. We may also choose to combine debug and temp into a single temp directory, depending
upon project requirements.

For a client-side or mobile hybrid app, we may slightly modify this directory structure as follows

.
|-- debug
| |-- css
| |-- img
| |-- js
|-- src
| |-- assets
| |-- css
| |-- js
| |__ app.js
|-- temp
|-- testing
|__ index.html

The assets directory may include raw image files, icons, &c. For the debug distribution, we may test builidng
these image assets as sprites, which are all added to the img directory during the build.

We may also use image optimisation at this stage, in particular to test UI and UX performance.

Part of the debug distribution is the use of watch for live reloading, and nodemon for Node.js based apps.

We might also consider tasks to aggregate logging within the app's code. This may include explicit
console.log() statements, and error handling.

For a release distribution, for example, we might add a custom task to remove all development logging, such as
console.log() statements, from the project's JS code.

environment setup - development Grunt config

We can now update our Grunt config to use a debug distribution in the current development environment.

For example, we need to add any required build options for debug, and then integrate the required environment
config variables &c.

We can start with unencrypted JSON files, which may contain defaults for options such as the current
environment, and the server's port number.

A sample JSON object is as follows,

{
 "NODE_ENV": "development",
 "PORT": 3826
}

Then, we may define some additional project directories for encrypted and decrypted config files.

.
|-- env
| |-- defaults
| |-- private
| |-- secure

So, env/defaults contains the unencrypted defaults, as defined in defaults.json, whilst env/private
includes decrypted secure files. env/secure should be reserved for encrypted files, which we may add to
version control. However, env/private should not be commited to version control.

There are a few different options for file encryption, including RSA based public/private keys, and GNU Privacy
Guard (GPG, or GnuPG).

encrypt with RSA public key

For distributed files with encryption, we may use RSA tools to ensure a file is encrypted prior to sharing. RSA
usage is as follows,

create private key (do not share)
use key to encrypt sensitive files
use encrypted file with code base

change unencrypted file and then encrypt (re-run as needed...)
encrypted file can only be accessed with public key

On OS X, for example, we may encrypt a file using ssh-keygen. A good intro is available at the following URL,

https://www.ssh.com/ssh/keygen/

However, if we want to create a standard public/private key pair, we may use the following initial terminal
command

ssh-keygen -t rsa -b 4096

This will create a public id_rsa.pub key with a matching id_rsa private key in a hidden directory, .ssh, in
the user's home directory,

cd ~/.ssh

However, we may also create these keys with custom names for a given project,

ssh-keygen -f ~/.ssh/basic-env-node -t rsa -b 4096

A common use of such public/private key pairs is for remote server access using ssh. However, we may also
use such keys to encrypt files.

To encrypt larger files, including JSON, txt &c., we need to use a public key in .pem format. We need to generate
a .pem version of our current public key,

However, we start by converting the private key,

openssl rsa -in id_rsa -outform pem > id_rsa.pem

and then the matching public key

openssl rsa -in id_rsa -pubout -outform pem > id_rsa.pub.pem

Each key is defined relative to its current location, e.g. ~/.ssh/id_rsa is common for OS X, Linux &c.

It is now safe to share the generated id_rsa.pub.pem key file.

Then, we need to generate a 256bit (32 byte) random key for encrypting the file,

openssl rand -base64 32 > key.bin

and then we encrypt the key itself,

openssl rsautl -encrypt -inkey id_rsa.pub.pem -pubin -in key.bin -out
key.bin.enc

Finally, we may now encrypt the large file

openssl enc -aes-256-cbc -salt -in defaults.json -out defaults.json.enc -
pass file:./key.bin

We can now send the .enc files to another developer or add them to version control. To decrypt the encoded
file,

openssl rsautl -decrypt -inkey id_rsa.pem -in key.bin.enc -out key.bin

openssl enc -d -aes-256-cbc -in defaults.json.enc -out defaults.json -pass
file:./key.bin

We will now have the decryted file defaults.json with the required settings for the local system.

n.b. we should also verify the hash of the file with the recipient or even sign it with a private key. This is to avoid a
man-in-the-middle attack.

sign and verify a file

We can add an extra layer of verification for a file by adding a generated signature for a given RSA key pair.

As above, we may again use openssl to sign and verify a required signature.

To sign a file, we may use the digest function, dgst, provided by openssl. Documentation for dgst may be
found at the following URL,

openssl - dgst

For example, to sign a file using SHA-256 with binary file output

openssl dgst -sha256 -sign id_rsa.pem -out signature.sign defaults.json

In this example, we are creating a signature file for the file, defaults.json, using the local private key
id_rsa.pem.

We may then check and verify this signature for the file defaults.json,

openssl dgst -sha256 -verify id_rsa.pub.pem -signature signature.sign
defaults.json

This check requires the shared public key for the file defaults.json.

So, we may now sign the encrypted file, and provide the signature for verification purposes,

openssl dgst -sha256 -sign id_rsa.pem -out signature.enc.sign
defaults.json.enc

environment setup - hosted solutions

For staging and production, we need to consider hosted solutions.

We may choose to host these environments on custom servers or, commonly, we may use a cloud service such
as Heroku.

Heroku provides a command-line interface for managing environment variables per project.

For example, the Heroku CLI tool may be used to manage hosted projects from a terminal.

This CLI tool allows a developer to easily set environment variables for a project. We can define the environment
as staging, for example, and customise variables specific to this hosting requirement.

heroku config:set NODE_ENV=staging

https://www.openssl.org/docs/manmaster/man1/dgst.html#
https://devcenter.heroku.com/categories/command-line

We might also modify the port number for a particular server or, perhaps, update the execution mode to debug
or release.

Merging config sources

As a project develops, we may produce various sources of configuration.

As noted above, this may include sources such as JSON files, JavaScript objects, environment variables,
process arguments, and so on.

To help merge such disparate config sources, we may add an NPM module such as nconf

nconf

or we may simply load environment variables from a project's .env file using the package dotenv

dotenv

sample waterfall with nconf

With nconf, we may bundle various config stages for a project.

For example,

const nconf = require('nconf');
nconf.argv();
nconf.env();
nconf.file('dev', 'development.json');
module.exports = nconf.get.bind(nconf);

In effect, we're grabbimg config variables and settings from the defined stores in a defined cascading order.

The order is prioritised, allowing overrides and defaults at various stages of the cascade. In the above example, if
a value is given in the command arguments, argv, this will take precedent over subsequent stages.

Continuous development

Continuous development allows a developer to work on app code &c. without many of the customary
interruptions, such as server reboots, code refreshes, debugging, linting &c.

Continuous development often reduces the repetitive tasks in a development flow, thereby automating processes
and development.

A build process may be automated and run whenever a pertinent change is detected.

add a watch

We may add a watch task to a build flow to allow a rebuild each time a given file is edited and then saved.

For Grunt, we may add the plugin module grunt-contrib-watch.

https://www.npmjs.com/package/nconf
https://www.npmjs.com/package/dotenv

npm install grunt-contrib-watch --save-dev

and update the Grunt config,

grunt.loadNpmTasks('grunt-contrib-watch');

This plugin watches the file system for code changes in a tracked project, and runs the affected tasks.

A basic watch example might include the following

watch: {
 js: {
 tasks: ['jshint:client'],
 files: ['src/**/*.js']
 }
}

This continuously checks the src directory for a JavaScript file change or addition, which will then run the
jshint:client task. This type of watch provides a broad approach to managing project changes.

We may then include additional targets relative to project requirements. Similar to the above JS pattern, we may
add further JS specific targets, CSS, sprites &c.

As expected, we may also define a separate build tasks to use watch, e.g.

// dev tasks - combine debug with watch
grunt.registerTask('dev', ['build:debug', 'watch']);

which we may call as follows,

grunt dev

This will first execute the tasks for build:debug, and then start watching the specified targets.

live reload

We may also use watch to add support for live reloads. There is built-in support with the grunt-contrib-
watch plugin.

The reload option uses web sockets, a technology originally designed for browser based real-time
communication and synchronisation. The LiveReload option listens for changes to monitored files, directories &c.
It may then reload and refresh the current active app.

Support for the LiveReload task may added as follows,

livereload: {
 options: {
 livereload: true
 },
 files: ['build/**/*', './*.html'],
},

This will provide a live reload server, which usually runs at localhost:35729. This object includes a property
to confirm livereload, and then defines the files to watch to initiate a reload. In this example, we're watching
the build directory, and its children, and then the root directory for any HTML files. This will include, of course,
any changes to the default index.html file.

However, this server does not actually reload the app for us. We need to use a server to host the app, which is
then monitoring this livereload server.

To help with this monitoring setup, livereload also provides a setup script for the test app. We may either
add a link to this script in our project's index.html file,

<script src="http://localhost:35729/livereload.js"></script>

or use a Grunt plugin, grunt-contrib-connect to automatically inject it in our app's code. This is the
preferred option for ongoing development.

We may install this plugin as follows,

npm install grunt-contrib-connect --save-dev

and then update the Gruntfile.js config as follows,

connect: {
 server: {
 options: {
 port: 8080,
 base: '.',
 hostname: '*',
 protocol: 'http',
 livereload: true,
 }
 },
},

To use these plugins, we need to update the required build tasks, e.g. we'll add connect and livereload support
to the dev build task

// dev tasks - combine debug with watch, live server, and live reload
grunt.registerTask('dev', ['build:debug', 'connect', 'watch']);

We may then run this build task,

grunt dev -v

The -v flag outputs verbose messages to help us initialy check everything is running as expected.

monitor node

We may also add a monitor for Node using the package nodemon.

Usage will depend on app requirements, and whether we are integrating any running Node processes, for
example Express.

nodemon install is as follows,

npm install nodemon

or add the -g flag for system-wide install.

We may then use nodemon to run Node based apps instead of the standard node command.

Add CSS support

App styles will, customarily, include a combination of CSS stylesheets and dynamic JavaScript based style
properties.

To work with CSS stylesheets, similar to JavaScript files, we may consider a Grunt task for minifying these files.

We need to install the Grunt module,

npm install grunt-contrib-cssmin --save-dev

and then add the following to include this package in the Gruntfile.js config,

grunt.loadNpmTasks('grunt-contrib-cssmin');

Then, we may update the build task for a release distribution

// build tasks with specific 'release' targets...
 grunt.registerTask('build:release', ['rollup:release', 'cssmin:release',
'uglify:release', 'buildMeta:release', 'clean']);

referencing the following task for cssmin

cssmin: {
 release: {
 options: {
 banner: '/* minified css file - basic-es-modules */'
 },
 files: {
 'build/css/mini.css': [
 'src/css/main.css',
]
 }
 }
},

Once the minified CSS stylesheet has been built, we can add a link to it in our index.html file

<!-- css styles - main -->
<link rel="stylesheet" href="./build/css/mini.css">

We may then update our watch task by adding the following for CSS,

css: {
 files: ['src/**/*.css'],
 tasks: ['cssmin:release']
},

We may then run our usual Grunt build tasks to minify the CSS stylesheets, and watch for any updates and
changes.

Watch update

The current watch task includes support for CSS, JS, and HTML.

It includes checks for modifications to any of the defined src directories for CSS and JS, plus any HTML files in
the app's root directory.

A working watch task is as follows,

watch: {
 js: {
 files: ['src/**/*.js'],
 tasks: ['jshint:client', 'rollup:release',
'uglify:release']
 },
 css: {
 files: ['src/**/*.css'],
 tasks: ['cssmin:release']
 },
 html: {
 files: ['./*.html']
 },
 livereload: {
 options: {
 livereload: true
 },
 files: ['build/**/*', './*.html'],
 },
},

