
JS	-	Generators	and	Promises
Dr	Nick	Hayward

A	brief	introduction	to	generators	and	promises	with	plain	JavaScript.

Contents

intro
async	code	and	execution
generators

iterator	object
iterate	over	iterator	object
call	generator	within	a	generator
practical	generator	-	recursive	traversal	of	the	DOM
exchanging	data	with	a	generator
detailed	structure	of	generators

promises
callbacks	and	async
further	details	on	promises
explicitly	reject	promises
a	real-world	promise
chain	promises
waiting	for	multiple	promises
racing	promises

combining	generators	and	promises

Intro

Generators	and	Promises	are	new	to	plain	JavaScript	with	the	introduction	of	ES6.

Generators	are	a	special	type	of	function,	which	produce	multiple	values	per	request	whilst	suspending	their
execution	between	these	requests.

In	JS,	generators	are	useful	to	help	simplify	convoluted	loops,	suspend	and	resume	code	execution,	&c.	Each	benefit
also	helps	write	simple,	more	elegant	async	code.

Promises	are	a	new,	built-in	object	to	simply	help	development	of	async	code.	As	such,	a	promise	becomes	a
placeholder	for	a	value	not	currently	available,	but	one	that	will	be	available	later.

Async	code	and	execution

JS	relies	on	a	single-threaded	execution	model.

If	we	query	a	remote	server	using	standard	code	execution,	we	block	the	UI	until	a	response	is	received	and	various
operations	completed.

We	may	modify	our	code	to	use	callbacks,	which	will	be	invoked	as	a	task	completes.	This	should	work	without
blocking	the	UI	but	it	can	quickly	create	a	spaghetti	mess	of	code,	error	handling,	and	logic.

Generators	and	Promises	are	an	elegant	solution	to	this	mess	and	proliferation	of	code.

Generators



A	generator	function	generates	a	sequence	of	values.	However,	this	is	commonly	not	all	at	once	but	on	a	request
basis.

A	generator	is	explicitly	asked	for	a	new	value,	and	it	will	either	return	a	value	or	a	response	of	no	more	values.

After	producing	a	requested	value,	a	generator	will	then	suspend	instead	of	ending	its	execution.	The	generator	will
then	resume	when	a	new	value	is	requested.

e.g.

//generator	function
function*	nameGenerator()	{
		yield	"emma";
		yield	"daisy";
		yield	"rosemary";
}

We	define	our	generator	function	by	appending	an	asterisk	after	the	keyword.	We	may	then	use	the	 yield 	keyword
within	the	body	of	the	generator	to	request	and	retrieve	individual	values.

We	may	then	consume	these	generated	values	using	a	standard	loop,	or	perhaps	the	new	 for-of 	loop.

iterator	object

If	we	make	a	call	to	the	body	of	the	generator,	an	iterator	object	will	be	created.

We	may	now	communicate	with	and	control	the	generator	using	the	iterator	object.

e.g.

//	generator	function
function*	NameGenerator()	{
		yield	"emma";
}
//	create	an	iterator	object
const	nameIterator	=	NameGenerator();

The	iterator	object,	 nameIterator ,	exposes	various	methods	including	the	 next 	method.	We	may	use	 next 	to
control	the	iterator,	and	request	its	next	value.	e.g.

//	get	a	new	value	from	the	generator	with	the	'next'	method
const	name1	=	nameIterator.next();

The	 next 	method	executes	the	generator's	code	to	the	next	yield	expression.	It	then	returns	an	object	with	the	value
of	the	yield	expression,	and	a	property	 done 	set	to	false	if	a	value	is	still	available.

This	boolean	will	switch	to	true	if	there	is	no	value	for	the	next	requested	yield.	This	way	we	know	the	iterator	for	the
generator	has	now	finished.

iterate	over	iterator	object

We	may	simply	iterate	over	the	iterator	object	to	return	each	value	per	available	yield	expression.

The	 for-of 	loop,	for	example,	works	well



//	iterate	over	iterator	object
for(let	iteratorItem	of	NameGenerator())	{
		if	(iteratorItem	!==	null)	{
				console.log("iterator	item	=	"+iteratorItem+index);
		}
}

This	is	noticeably	clearer	than	an	equivalent	loop	with	 while .

call	generator	within	a	generator

We	may	also	call	a	generator	from	within	another	generator,

e.g.

//generator	function
function*	NameGenerator()	{
		yield	"emma";
		yield	"rose";
		yield	"celine";
		yield*	UsernameGenerator();
		yield	"yvaine";
}

function*	UsernameGenerator()	{
		yield	"frisby67";
		yield	"trilby72";
}

We	may	then	use	the	initial	generator,	 NameGenerator ,	as	normal.

practical	generator	-	recursive	traversal	of	the	DOM

The	document	object	model,	or	DOM,	is	tree-like	structure	of	HTML	nodes.	Every	node,	except	the	root,	has	exactly
one	parent,	and	the	potential	for	zero	or	more	child	nodes.

As	such,	DOM	traversal	is	a	common	and	necessary	requirement	of	client-side	development.

However,	we	may	now	use	generators	to	help	iterate	over	the	DOM	tree.

e.g.

//	generator	function	-	traverse	the	DOM
function*	DomTraverseGenerator(htmlElem)	{
		yield	htmlElem;
		htmlElem	=	htmlElem.firstElementChild;
		//	transfer	iteration	control	to	another	instance	of	the	current	generator	-	
enables	sub	iteration...
		while	(htmlElem)	{
				yield*	DomTraverseGenerator(htmlElem);
				htmlElem	=	htmlElem.nextElementSibling;
		}
}

A	benefit	to	this	generator-based	approach	for	DOM	traversal	is	that	callbacks	are	not	required.	Simpler	code	ensues,
and	we're	able	to	consume	the	generated	sequence	of	nodes	with	a	simple	 for-of 	loop	without	using	callbacks.

In	the	above	example,	we're	also	able	to	use	generators	to	separate	our	code.	For	example,	we	have	code	that	is
producing	values,	a	HTML	node	in	this	example,	from	code	consuming	the	sequence	of	generated	values.	In	this
example,	we're	using	the	 for-of 	loop	to	log	visited	nodes.



exchanging	data	with	a	generator

We	can	also	send	data	to	a	generator,	thereby	enabling	bi-directional	communication.

So,	we	may	request	data,	then	process	it,	and	return	an	updated	value	when	necessary	to	a	generator.

The	easiest	option	is	to	simply	consider	a	generator	like	a	normal	function,	sending	data	using	function	call	arguments.

//	generator	function	-	send	data	to	generator	-	receive	standard	argument
function*	MessageGenerator(data)	{
		//	yield	a	value	-	generator	returns	an	intermediary	calculation
		const	message	=	yield(data);
		yield("Greetings,	"+	message);
}

const	messageIterator	=	MessageGenerator("Hello	World");
const	message1	=	messageIterator.next();
console.log("message	=	"+message1.value);

const	message2	=	messageIterator.next("Hello	again");
console.log("message	=	"+message2.value);

The	first	call	with	the	 next() 	method	requests	a	new	value	from	the	generator,	which	will	return	the	initial	passed
argument.	The	generator	is	then	suspended.

The	second	call	using	 next() 	will	resume	the	generator,	again	requesting	a	new	value.	However,	it	also	sends	a
new	argument	into	the	generator	using	the	 next() 	method.	This	newly	passed	argument	value	becomes	the
complete	value	for	this	yield,	thereby	replacing	the	previous	value	 Hello	World .

So,	we	can	achieve	the	required	bi-directional	communication	with	a	generator.	We	may	use	 yield 	to	return	data
from	a	generator,	and	then	use	the	iterator's	 next() 	method	to	pass	data	back	to	the	generator.

detailed	structure	of	generators

Generators	work	in	a	detailed	manner	as	follows,

suspended	start	-	none	of	the	generator	code	is	executed	when	it	first	starts
executing	-	execution	either	starts	at	the	beginning	or	resumes	where	it	was	last	suspended.	This	state	is	created
when	the	iterator's	 next() 	method	is	called...code	must	exist	in	generator	for	execution
suspended	yield	-	whilst	executing,	a	generator	may	reach	 yield .	It	will	then	create	a	new	object	carrying	the
return	value,	yields	this	object,	and	then	suspends	execution	at	the	point	of	the	yield...
completed	-	a	 return 	statement	or	lack	of	code	to	execute	will	cause	the	generator	to	move	to	a	complete
state

Promises

A	promise	is	similar	to	a	placeholder	for	a	value	we	currently	do	not	have,	but	we	would	like	later.	In	effect,	it's	a
guarantee	we'll	eventually	receive	the	result	to	an	asynchronous	request,	computation	&c.

A	result	will	be	returned,	either	a	value	or	an	error.

So,	we	commonly	use	promises	to	fetch	data	from	a	server.



e.g.

//	use	built-in	Promise	constructor	-	pass	callback	function	with	two	parameters	
(resolve	&	reject)
const	testPromise	=	new	Promise((resolve,	reject)	=>	{
		resolve("test	return");
		//	reject("an	error	has	occurred	trying	to	resolve	this	promise...");
});

//	use	`then`	method	on	promise	-	pass	two	callbacks	for	success	and	failure
testPromise.then(data	=>	{
		//	output	value	for	promise	success
		console.log("promise	value	=	"+data);
},	err	=>	{
		//	output	message	for	promise	failure
		console.log("an	error	has	been	encountered...");
});

We	may	use	the	built-in	Promise	constructor	to	create	a	new	promise	object.	We	can	then	pass	a	function,	which	is	a
standard	arrow	function	in	the	above	example.

This	function	for	a	Promise	is	commonly	known	as	an	executor	function,	and	includes	two	parameters,	 resolve 	and	
reject .

The	executor	function	is	called	immediately	as	the	Promise	object	is	being	constructed.	The	 resolve 	argument	is
called	manually	when	we	need	the	promise	to	resolve	successfully.	The	second	argument,	 reject ,	will	be	called	if
an	error	occurs.

This	example	uses	the	promise	by	calling	the	built-in	 then 	method	available	on	the	promise	object.	This	 then
method	accepts	two	callback	functions,	 success 	and	 failure .

success 	is	called	if	the	promise	resolves	successfully,	whilst	the	 failure 	callback	is	available	if	there	is	an	error.

callbacks	and	async

Async	code	is	useful	to	prevent	execution	blocking,	and	delays	in	the	browser,	in	particular	as	we	execute	long-
running	tasks.

This	issue	is	often	solved	using	callbacks.	In	effect,	we	provide	a	callback	that's	invoked	when	the	task	is	completed.

However,	such	long	running	tasks	may	result	in	errors.	Therefore,	the	issue	with	callbacks	is	that	we	can't	use	built-in
constructs	such	as	 try-catch 	statements.

e.g.

try	{
		getJSON("data.json",	function()	{
				//	handle	return	results...
		});
}	catch	(e)	{
		//	handle	errors...
}

This	won't	work	as	expected	because	the	code	executing	the	callback	is	not	usually	executed	in	the	same	step	of	the
event	loop	as	the	code	running	the	long	task.

So,	errors	will	usually	get	lost	as	part	of	this	long	running	task.

Another	issue	with	callbacks	is	nesting,	often	to	the	point	where	the	code	may	become	difficult	to	read,	understand,
and	debug.



A	third	issue	is	trying	to	run	parallel	callbacks.	Performing	a	number	of	parallel	steps	becomes	inherently	tricky	and
error	prone.

further	detail	on	promises

A	promise	starts	in	a	pending	state	where	we	know	nothing	about	the	return	value.	In	this	state,	the	promise	is	often
known	as	an	unresolved	promise.

During	execution,	if	the	promise's	resolve	function	is	then	called,	it	will	now	move	into	its	fulfilled	state.	The	return
value	is	now	available.

If	there	is	an	error	or	issue,	or	the	reject	method	is	explicitly	called,	the	promise	will	simply	move	into	a	rejected	state.
The	return	value	is	no	longer	available,	but	an	error	is	available.

Either	of	these	states	means	that	the	promise	can	now	no	longer	switch	state.	i.e	from	rejected	to	fulfilled	and	vice-
versa...

So,	an	example	of	working	with	a	promise	may	be	as	follows

code	starts	(execution	is	ready)
promise	is	now	executed	and	starts	to	run
promise	object	is	created
promise	continues	until	it	resolves

successful	return,	artificial	timeout	&c.

code	for	the	current	promise	is	now	at	an	end
promise	is	now	resolved

value	is	available	in	the	promise

then	work	with	resolved	promise	and	value
call	 then 	method	on	promise	and	returned	value...
this	callback	is	scheduled	for	successful	resolve	of	the	promise
this	callback	will	always	be	asynchronous	regardless	of	state	of	promise...

explicitly	reject	promises

Two	standard	ways	to	reject	a	promise.

explicit	rejection	of	promise

const	promise	=	new	Promise((resolve,	reject)	=>	{
		reject("explicit	rejection	of	promise");
});

Once	the	promise	has	been	rejected,	an	error	callback	will	always	be	invoked,	e.g.	through	the	calling	of	the	 then
method

promise.then(
		()	=>	fail("won't	be	called..."),
		error	=>	pass("promise	was	explicitly	rejected...");
);

We	may	also	chain	a	 catch 	method	to	the	 then 	method	as	an	alternative	to	the	error	callback.	e.g.

promise.then(
		()	=>	fail("won't	be	called..."))
		.catch(error	=>	pass("promise	was	explicitly	rejected..."));



a	real-world	promise

We	may	use	a	promise	to	perform	an	asynchronous	action	on	the	client-side	by	fetching	data	from	a	server.

For	example,	we	may	use	the	built-in	 XMLHttpRequest 	object	to	perform	this	fetching	of	data.

e.g.

//	create	a	custom	get	json	function
function	getJSON(url)	{
		//	create	and	return	a	new	promise
		return	new	Promise((resolve,	reject)	=>	{
				//	create	the	required	XMLHttpRequest	object
				const	request	=	new	XMLHttpRequest();
				//	initialise	this	new	request	-	open
				request.open("GET",	url);
				//	register	onload	handler	-	called	if	server	responds
				request.onload	=	function()	{
						try	{
								//	make	sure	response	is	OK	-	server	needs	to	return	status	200	code...
								if	(this.status	===	200)	{
										//	try	to	parse	json	string	-	if	success,	resolve	promise	successfully	with	
value
										resolve(JSON.parse(this.response));
								}	else	{
										//	different	status	code,	exception	parsing	JSON	&c.	-	reject	the	
promise...
										reject(this.status	+	"	"	+	this.statusText);
								}
						}	catch(e)	{
								reject(e.message);
						}
				};

				//	if	error	with	server	communication	-	reject	the	promise...
				request.onerror	=	function()	{
						reject(this.status	+	"	"	+	this.statusText);
				};

				//	send	the	constructed	request	to	get	the	JSON
				request.send();
		});
}

//	call	getJSON	with	required	URL,	then	method	for	resolve	object,	and	catch	for	
error
getJSON("test.json").then(response	=>	{
		//	check	return	value	from	promise...
		response	!==	null	?	"response	obtained"	:	"no	response";
}).catch((err)	=>	{
		//	Handle	any	error	that	occurred	in	any	of	the	previous	promises	in	the	chain.
	 console.log('error	found	=	',	err);	//	not	much	to	show	due	to	return	of	
jsonp	from	flickr...
});

This	example	has	created	a	 getJSON 	function	that	returns	a	promise.	This	enables	us	to	register	callbacks	for
success	and	failure	for	asynchronously	getting	the	JSON	from	a	server.

With	the	XMLHttpRequest	object,	we	have	two	available	events

onload 	-	triggered	as	the	browser	receives	a	response	from	the	server
onerror 	-	triggered	as	an	error	is	received

Each	of	these	event	handlers	are	triggered	asynchronously	as	required	by	the	browser.



For	the	 onload 	event,	we're	checking	the	return	code	of	the	response.	In	effect,	was	the	requested	loaded
successfully.	This	will	give	us	the	required	200	status	code,	otherwise	we	can	simply	reject	the	promise.

We	surround	the	 JSON.parse 	method	in	a	 try-catch 	statement	so	we	can	check	the	return	JSON	code	for	syntax
errors.	If	an	exception	occurs,	again	we	may	simply	reject	the	promise.

Once	we've	successfully	resolved	the	promise,	we	may	use	our	 getJSON 	function	to	work	with	the	response.

chain	promises

By	calling	 then 	on	the	returned	promise	itself	creates	a	new	promise.	So,	we	may	then	register	an	additional
callback	if	this	promise	is	now	resolved	successfully.

We	may	now	chain	as	many	 then 	methods	as	necessary.	In	effect,	we	create	a	sequence	of	promises,	which
hopefully	will	each	be	resolved	one	after	another.

Instead	of	creating	deeply	nested	callbacks,	we	may	now	simply	chain	such	methods	to	our	initial	resolved	promise.

To	catch	an	error	we	may	chain	a	final	 catch 	call.	So,	if	we're	simply	interested	in	a	failure	for	the	overall	chain,	we
may	use	the	 catch 	method	for	the	overall	chain,	e.g.

getJSON().then()
.then()
.then()
.catch((err)	=>	{
		//	Handle	any	error	that	occurred	in	any	of	the	previous	promises	in	the	chain.
	 console.log('error	found	=	',	err);	//	not	much	to	show	due	to	return	of	
jsonp	from	flickr...
});

If	a	failure	occurs	in	any	of	the	previous	promises,	the	 catch 	method	will	be	called.

waiting	for	multiple	promises

Promises	also	make	it	easy	to	wait	for	multiple,	independent	asynchronous	tasks.

With	 Promise.all ,	we	may	wait	for	a	number	of	promises.

e.g.

//	wait	for	a	number	of	promises	-	all
Promise.all([
//	call	getJSON	with	required	URL,	`then`	method	for	resolve	object,	and	`catch`	for	
error
getJSON("notes.json"),
getJSON("metadata.json")]).then(response	=>	{
		//	check	return	value	from	promise...response[0]	=	notes.json,	response[1]	=	
metadata.json	&c.
		if	(response[0]	!==	null)	{
	 	 console.log("response	obtained");
			 console.log("notes	=	",	JSON.stringify(response[0]));
			 console.log("metadata	=	",	JSON.stringify(response[1]));
	 }
}).catch((err)	=>	{
		//	Handle	any	error	that	occurred	in	any	of	the	previous	promises	in	the	chain.
	 console.log('error	found	=	',	err);	//	not	much	to	show	due	to	return	of	
jsonp	from	flickr...
});

The	order	of	execution	for	tasks	doesn't	matter	for	 Promise.all ,	and	indeed	whether	some	have	finished	or	not.	By
using	the	 Promise.all 	method,	we	are	simply	stating	that	we	want	to	wait.



This	method,	 Promise.all ,	accepts	an	array	of	promises,	and	then	creates	a	new	promise	that	will	resolve
successfully	when	all	passed	promises	resolve.	However,	it	will	reject	if	a	single	one	of	the	passed	promises	fails.

The	return	promise	is	an	array	of	succeed	values	as	responses.	In	effect,	one	succeed	value	for	each	passed	in
promise.

racing	promises

We	may	also	setup	competing	promises,	with	an	effective	prize	to	the	first	promise	to	resolve	or	reject.	This	might	be
useful	for	querying	multiple	APIs,	databases,	&c.

To	race	our	promises,	we	may	use	the	 Promise.race 	method,	e.g.

Promise.race(
		[
		//	call	getJSON	with	required	URL,	`then`	method	for	resolve	object,	and	`catch`	
for	error
		getJSON("notes.json"),
		getJSON("metadata.json")]).then(response	=>	{
				if	(response	!==	null)	{
			 	 console.log(`response	obtained	-	${response}	won...`);
				}
		}).catch((err)	=>	{
				//	Handle	any	error	that	occurred	in	any	of	the	previous	promises	in	the	chain.
			 console.log('error	found	=	',	err);	//	not	much	to	show	due	to	return	of	
jsonp	from	flickr...
		});
);

This	method	accepts	an	array	of	promises,	and	returns	a	completely	new	resolved	or	rejected	promise	for	the	first	of
resolved	or	rejected	promises.

Combining	generators	and	promises

By	combining	generators	and	promises,	the	idea	is	simply	to	put	code	that	uses	asynchronous	tasks	in	the	generator.
Then,	we	can	execute	and	use	the	generator	with	that	async	code.

As	we	reach	some	async	code	in	the	generator,	we	can	create	a	promise	that	represents	the	value	of	the	async	task.
At	the	same	point,	we	yield	from	the	generator	to	avoid	blocking	the	logic	and	the	UI.

When	the	promise	has	been	resolved,	we	may	then	continue	the	execution	of	our	generator	by	calling	its	 next
method.	We	may,	of	course,	call	this	method	as	many	times	as	necessary	during	the	lifecycle	of	the	generator.

So,	an	example	might	be	as	follows

async 	function	takes	a	generator,	calls	it,	and	creates	the	required	iterator
use	iterator	to	resume	generator	execution	as	needed
declare	a	handle	function	-	handles	one	return	value	from	generator

one	iteration	of	iterator

if	generator	result	is	a	promise	&	resolves	successfully	-	use	iterator's	 next 	method
promise	value	sent	back	to	generator
generator	resumes	execution

if	error,	promise	gets	rejected
error	thrown	to	generator	using	iterator's	 throw 	method

continue	generator	execution	until	it	returns	 done

generator 	-	executes	up	to	each	 yield	getJSON()



promise	created	for	each	 getJSON() 	call
value	is	fetched	async	-	generator	is	paused	whilst	fetching	value...
control	flow	is	returned	to	current	invocation	point	in	 handle 	function	whilst	paused

handle 	function
yielded	value	to	 handle 	function	is	a	promise
able	to	use	 then 	and	 catch 	methods	with	promise	object

registers	success	and	error	callback
execution	is	able	to	continue


