
JS	Patterns	-	Observer
Dr	Nick	Hayward

A	brief	overview	of	implementing	the	observer	pattern	using	plain	JavaScript.

contents

intro
pattern	usage
example

intro

The	observer	pattern	is	used	to	help	define	a	one	to	many	dependency	between	objects.

So,	as	the	subject	(object)	changes	state,	any	dependent	observers	(object/s)	are	then	notified	automatically	and
may	update	accordingly.

We're	trying	to	ensure	that	those	affected	by	such	changes	in	state	are	kept	in	sync	with	the	application	itself.	Instead
of	standard	push/pull	concepts	between	components,	we're	able	to	create	bindings	that	become	event	driven.

So,	we	often	simply	use	this	pattern	with	bindings	that	are	one	to	many,	one	way,	and	commonly	event	driven.

e.g.

																			|		subject		|

																						^					|
																						|					|
										subscribe			|					|			notify
								unsubscribe			|					|
																						|					|
																						|					v

																			|	observers	|

In	effect,	the	observer	pattern	creates	a	model	of	event	subscription	with	notifications.

A	benefit	of	this	pattern	is	its	tendency	to	promote	loose	coupling	in	component	design	and	development.

This	pattern	is	used	a	lot	in	JavaScript	based	applications,	and	client-side	development	in	general.	User	events,	for
example,	are	a	common	example	of	this	usage.

n.b.	this	pattern	is	often	known	by	an	alternative	name,	Publication/Subscription	(or	Pub/Sub).	However,	there	are	also
subtle	differences	between	these	two	patterns.	Be	careful	with	each	implementation.

pattern	usage

As	noted	above,	the	pattern	includes	two	primary	objects,

subject
provides	interface	for	observers	to	subscribe	and	unsubscribe
sends	notifications	to	observers	for	changes	in	state
maintains	record	of	subscribed	observers

e.g.	a	click	in	the	UI

observer
includes	a	function	to	respond	to	subject	notifications
e.g.	a	handler	for	the	click

example

//	constructor	for	subject
function	Subject	()	{
		//	keep	track	of	observers
		this.observers	=	[];
}

//	add	subscribe	to	constructor	prototype
Subject.prototype.subscribe	=	function(fn)	{
		this.observers.push(fn);
};

//	add	unsubscribe	to	constructor	prototype
Subject.prototype.unsubscribe	=	function(fn)	{
		//	...
};

//	add	broadcast	to	constructor	prototype
Subject.prototype.broadcast	=	function(status)	{
		//	each	subscriber	function	called	in	response	to	state	change...
		this.observers.forEach((subscriber)	=>	subscriber(status));
};

//	instantiate	subject	object
const	domSubject	=	new	Subject();

//	subscribe	&	define	function	to	call	when	broadcast	message	is	sent
domSubject.subscribe((status)	=>	{
		//	check	dom	load
		let	domCheck	=	status	===	true	?	`dom	loaded	=	${status}`	:	`dom	still	loading...`;
		//	log	dom	check
		console.log(domCheck)
});

document.addEventListener('DOMContentLoaded',	()	=>	domSubject.broadcast(true));

