
React	Native	-	Basics	-	Props
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	Props	in	React	Native	app	development.

Contents

intro
props 	usage

Intro

props 	in	React,	and	React	Native	in	this	instance,	are	parameters	we	may	pass	as	a	component	is	created.

Such	props	enable	most	components	to	be	customised	as	they're	created.

props 	usage

We	can	use	 props 	to	pass	variables,	for	example,	within	a	component.	More	often,	we	will	use	 props 	to	pass
values	and	variables	between	components.

In	custom	components,	such	usage	of	 props 	helps	abstract	component	structure	to	help	reuse	within	an	app.

e.g.

//	import	React,	Component	module	as	Component	from	base	React
import	React,	{	Component	}	from	'react';
//	import	Text	as	Text	&c.	from	React	Native
import	{	AppRegistry,	Text,	View	}	from	'react-native';

//	custom	abstracted	component	-	expects	props	for	text	`output`
class	OutputText	extends	Component	{
		render()	{
				return	(
						//	render	passed	props	`output`	value
						<Text>{this.props.output}</Text>
				);
		}
}

//	default	component	-	use	View	container	render	OutputText	message	with	passed	
props...
export	default	class	WelcomeMessage	extends	Component	{
		render()	{
				return	(
						//	View	container	-	render	Text	output	from	OutputText	component
						<View	style={{alignItems:	'center'}}>
								//	JSX	embed	OutputText	component	-	pass	value	for	props	`output`
								<OutputText	output='welcome	to	the	basic	tester...'	/>
						</View>
				);
		}
}

In	this	example,	we	define	the	required	imports	for	React	and	React	Native,	including	existing	components	we	need	for
this	basic	app.

AppRegistry 	-	entry	point	for	JavaScript	to	enable	a	React	Native	app	to	run...
added	as	part	of	 init 	command	for	React	Native	apps



Text 	-	used	to	display	text	within	an	app
View 	-	a	UI	container	for	displaying	content	(basic	requirement	for	UI	development	with	React	Native)

supports	layout	structures	with	flexbox,	style,	touch,	accessibility...

Then,	we	define	our	required	custom	components.	One	abstracted	for	broader	re-use,	the	other	for	use	in	the	current
specific	app.

OutputText 	is	the	abstracted	component,	which	accepts	 props 	as	part	of	the	output	for	a	standard	 Text
component.	As	the	 render() 	function	is	called	for	this	component,	it	returns	text	output	with	the	value	of	the	passed
props.

WelcomeMessage 	is	a	custom	component,	which	is	also	set	as	the	default	export	for	the	module.	If	the	export	is	not
explicitly	set,	this	component	(class	in	JS)	will	be	called	at	execution.

As	this	component	is	executed,	it	returns	a	standard	 View 	container	with	its	own	defined	 style 	props.	The	custom
JSX	uses	the	abstracted	 OutputText 	component	to	define	the	UI	rendering.	In	this	example,	we	set	the	expected	
props 	of	 output 	on	the	 OutputText 	JSX.

In	effect,	as	the	JSX	is	executed,	it	calls	the	custom	component	 OutputText ,	which	renders	a	standard	 Text
component	with	the	value	from	the	passed	 props .

So,	we	end	up	with	a	 View 	container,	which	includes	rendered	text	for	 welcome	to	the	basic	tester... .

The	benefit	is	that	we	can	now	re-use	the	 OutputText 	component	whenever	we	need	to	output	text	using	a	passed	
props 	value.


