
React	Native	-	Basics	-	Text	Input
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	text	input	in	React	Native	app	development.

Contents

intro
general	usage
props	usage
props	and	state

Intro

React	Native	includes	a	default	component	to	handle	user	text	input.

The	component	 TextInput 	is	similar	to	a	standard	input	field,	allowing	a	user	to	simply	enter	any	required	text
content.

General	usage

To	use	 TextInput 	with	an	app,	we	need	to	add	the	default	module	from	React	Native	as	part	of	the	standard	
import 	statement,

e.g.

import	{
		AppRegistry,
		Platform,
		StyleSheet,
		Text,
		TextInput,
		View
}	from	'react-native';

The	 TextInput 	component	includes	a	useful	prop,	 onChangeText ,	which	accepts	a	callback	function	for	each	time
the	text	is	changed	in	the	input	field.

Likewise,	it	also	includes	a	complementary	prop,	 onSubmitEditing ,	to	handle	text	as	it	is	submitted,	again	using	a
defined	callback	function.

Props	usage

So,	we	might	accept	user	text	input	for	a	given	value,	such	as	a	name,	place,	&c.

Then,	we	can	dynamically	update	the	view.

So,	we	can	initially	setup	our	 TextInput 	component	as	follows,

e.g.

<TextInput
		style={styles.textInput}
		placeholder={this.state.quoteInput}
		onChangeText={(quoteText)	=>	this.setState({quoteText})}
/>



n.b.	For	styling	this	component,	separate	from	the	parent	 View ,	we	need	to	ensure	a	minimum	height	of	40	to	ensure
the	text	is	not	cut	off	at	the	top	of	each	character.

Props	and	State

This	example	relies	upon	calling	and	setting	state	for	the	app,	relative	to	the	 TextInput 	and	various	 Text
components.

In	a	simple	constructor	for	this	app,	we	can	pass	required	 props 	and	define	intial	values	for	 state ,

e.g.

export	default	class	TextUpdater	extends	Component	{
		constructor(props)	{
				super(props);
				this.state	=	{
						quoteInput:	'enter	a	favourite	quotation...',
						quoteText:	'the	unexamined	life	is	not	worth	living...'
				};
		}
}

We	can	then	use	the	properties	on	 state 	to	set	initial	values	for	the	text	input	field	and	the	text	output,

e.g.

<TextInput
		style={styles.textInput}
		placeholder={this.state.quoteInput}
		onChangeText={(quoteText)	=>	this.setState({quoteText})}
/>

and

<Text	style={styles.content}>
	 {this.state.quoteText}
</Text>

So,	as	a	user	enters	their	text	in	the	input	field,	we	can	dynamically	set	state	for	the	property	 quoteText .	This	will
then	trigger	a	request	to	update	state,	which	will	eventually	create	an	update	for	parts	of	the	app	that	use	
state.quoteText .

n.b.	don't	forget	-	 setState 	may	not	automatically	trigger	an	update	to	the	contents	of	the	rendered	app.	React
Native	will	update	the	app	via	state	when	it	is	most	efficient.


