
React	Native	-	Basics	-	Touch	and	Touchable
Dr	Nick	Hayward

A	brief	intro	to	the	basics	of	text	input	in	React	Native	app	development.

Contents

intro
Basic	button	usage
Touchable	components

Intro

React	Native	includes	various	options	for	supporting	touch	interactions	in	an	app's	UI.

Various	default	components	support	tapping,	swiping,	scrolling	&c,	plus	a	Gesture	Responder	System	to	manage
various	stages	of	the	lifecycle	of	such	user	gestures.

Basic	button	usage

As	expected,	React	Native	provides	a	default	 Button 	component,	which	accepts	various	props	to	help	manage
usage	and	interaction,

e.g.

<Button
	 title='Basic	Button'
	 onPress={this._buttonPress}
/>

This	will	then	render	the	expected	UI	button	with	applicable	default	colours	and	styling	for	Android	and	iOS.

Android	=	blue,	rounded	rectangle	with	white	text
iOS	=	blue	label

We	can	also	customise	the	background	colour	for	this	default	button	with	a	simple	 color 	prop,	e.g.

<Button
	 onPress={this._buttonPress}
	 title='Tap	for	Alert'
	 color='cadetblue'
/>

So,	an	example	button	usage	might	be	as	follows,



export	default	class	ButtonPress	extends	Component	{
	 _buttonPress()	{
	 	 Alert.alert('a	button	has	been	tapped...')
	 }
	 render()	{
	 	 return	(
	 	 	 <View	style={styles.container}>
	 	 	 	 <View	style={styles.buttonBox}>
	 	 	 	 	 <Button
	 	 	 	 	 	 onPress={this._buttonPress}
	 	 	 	 	 	 title='Tap	for	Alert'
	 	 	 	 	 	 color='cadetblue'
	 	 	 	 	 />
	 	 	 	 </View>
	 	 	 </View>
	 	 );
	 }
}

Touchable	components

Touchable	components	allow	developers	to	add	touch	events	to	a	custom	component.	These	components	are	able	to
capture	tap	gestures,	and	then	fire	a	response	in	recognition	of	such	events.

There	is	no	default	styling	for	such	components,	so	a	developer	may	customise	them	as	desired	to	fit	a	given	app.

component	options

There	is	a	selection	of	touchable	components	available	for	use	with	custom	UI	elements	and	components.

Your	choice	of	component	will	largely	depend	upon	the	type	of	app	you're	creating,	and	the	interaction	feedback	you
want	to	convey	to	a	user.

Options	include	highlight,	opacity,	no	feedback,	and	custom	options	for	a	given	platform.

We	can	also	check	certain	explicit	user	interactions	using	available	props,	such	as	 onPress 	or	 onLongPress .

e.g.

export	default	class	TouchablePress	extends	Component	{
	 _touchablePress()	{
	 	 Alert.alert('test	touchable	tap	fired...');
	 }
	 render()	{
	 	 return	(
	 	 	 <View	style={styles.container}>
	 	 	 	 <View	style={styles.buttonBox}>
	 	 	 	 	 <TouchableHighlight
	 	 	 	 	 	 onPress={this._touchablePress}
	 	 	 	 	 	 underlayColor='cadetblue'
	 	 	 	 	 	 >
	 	 	 	 	 	 <View	style={styles.customButton}>
	 	 	 	 	 	 	 <Text>Try	a	Touchable	
Highlight</Text>
	 	 	 	 	 	 </View>
	 	 	 	 	 </TouchableHighlight>
	 	 	 	 </View>
	 	 	 	 <View	style={styles.contentBox}>

	 	 	 	 </View>
	 	 	 </View>
	 	 );



	 }
}

In	this	example,	we're	wrapping	a	basic	view	in	a	touchable	component,	which	includes	support	for	highlight	by
default.	Then.	we	pass	some	props	to	this	component	to	allow	us	to	modify	the	reaction	for	a	user's	press,	 onPress ,
and	a	modified	colour	for	the	highlight	itself.

For	the	props	 onPress ,	we	can	call	a	custom	function,	which	simply	displays	an	alert	as	feedback	to	the	user	for
each	touch	event.


